DELIVERABLE 7.1
Trial A Report
Abstract

This report presents an overview of the implementation of DAIAD’s Trial A, which took place in Alicante from 1st March 2016 to 28th February 2017, with the participation of 102 households (293 consumers). The purpose of Trial A was to evaluate and validate DAIAD technologies in a top-down perspective, with DAIAD being offered as a service from the local water utility (AMAEM).
History

<table>
<thead>
<tr>
<th>version</th>
<th>date</th>
<th>reason</th>
<th>revised by</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>01/08/2016</td>
<td>First draft</td>
<td>Sophia Karagiorgou</td>
</tr>
<tr>
<td>0.2</td>
<td>09/08/2016</td>
<td>Revisions in all sections</td>
<td>Ignacio Casals del Busto</td>
</tr>
<tr>
<td>0.3</td>
<td>10/08/2016</td>
<td>Revisions in all sections</td>
<td>Alejandro Garcia Monteagudo</td>
</tr>
<tr>
<td>0.4</td>
<td>17/08/2016</td>
<td>Content edits and updates on Issues</td>
<td>Alejandro Garcia Monteagudo</td>
</tr>
<tr>
<td>0.5</td>
<td>18/08/2016</td>
<td>Revisions in all sections</td>
<td>Sophia Karagiorgou</td>
</tr>
<tr>
<td>0.6</td>
<td>12/10/2016</td>
<td>Revisions in all sections</td>
<td>Alejandro Garcia Monteagudo</td>
</tr>
<tr>
<td>0.7</td>
<td>10/01/2017</td>
<td>Revisions in all sections</td>
<td>Alejandro Garcia Monteagudo</td>
</tr>
<tr>
<td>0.9</td>
<td>03/03/2017</td>
<td>Revisions in all sections</td>
<td>Ignacio Casals del Busto</td>
</tr>
<tr>
<td>1.0</td>
<td>07/03/2017</td>
<td>Final version</td>
<td>Spiros Athanasiou</td>
</tr>
</tbody>
</table>

Author list

<table>
<thead>
<tr>
<th>organization</th>
<th>name</th>
<th>contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATHENA RC</td>
<td>Spiros Athanasiou</td>
<td>spathan@imis.athena-innovation.gr</td>
</tr>
<tr>
<td>ATHENA RC</td>
<td>Sophia Karagiorgou</td>
<td>karagior@imis.athena-innovation.gr</td>
</tr>
<tr>
<td>ATHENA RC</td>
<td>Pantelis Chronis</td>
<td>pchronis@imis.athena-innovation.gr</td>
</tr>
<tr>
<td>ATHENA RC</td>
<td>Giorgos Giannopoulos</td>
<td>giann@imis.athena-innovation.gr</td>
</tr>
<tr>
<td>AMAEM</td>
<td>Ignacio Casals del Busto</td>
<td>Ignacio.casals@aguasdealicante.es</td>
</tr>
<tr>
<td>AMAEM</td>
<td>Alejandro Garcia Monteagudo</td>
<td>alejandro.garcia@aguasdealicante.es</td>
</tr>
</tbody>
</table>
Executive Summary

This report presents an overview of the implementation of DAIAD’s Trial A, which took place in Alicante from 1\(^{st}\) March 2016 to 28\(^{th}\) February 2017, with the participation of 102 households (293 consumers). The purpose of this report is to document the implementation and evolution of Trial A across its various phases, present all technical issues raised from DAIAD users (consumers and stakeholders), and report all anecdotal and informal information collected from the Consortium. As such, this report serves two goals. First, serve as a basis for the evaluation and validation of the complete DAIAD system which will be provided in Deliverable D7.3 ‘Trials Evaluation and Social Experiment Results’. Second, assist researchers and water sector practitioners in understanding the scope and context of our experimental study, in order to complete their background knowledge or implement similar large-scale studies.

The purpose of Trial A was to evaluate and validate DAIAD technologies in a top-down perspective, with DAIAD being offered as a service from the local water utility (AMAEM), with participants having access both to their SWM data, and one or more amphiro b1 devices. Consequently, in Trial A we attempted to replicate for participants the experience of DAIAD being offered as a new service from their water utility, as well as enable AMAEM’s experts to use DAIAD for water demand management. Towards this, AMAEM was portrayed as the system owner, requesting from its customers to assist in evaluating a new service before its roll-out across the entire population. Further, AMAEM handled all local communication activities and provided support services through its standard Helpdesk.

The Trial comprised five (5) consecutive treatment phases for the participating population spanning eight (8) months, as well as four (4) months as leeway to account for unforeseen delays. Phase 1 focused on validating the proper installation of the DAIAD system and collecting adequate baseline water consumption data for all participants. Phase 2 compared the effectiveness of analytical vs. real-time feedback. In Phase 3, all participants gained access to the entire DAIAD functionality, with the exception of social comparisons. In Phase 4, we established a control group and provided the remaining consumers access with to social comparisons. Finally, in Phase 5 all consumers gained complete access to the DAIAD system.

The implementation and progress of the Trial was monitored by the Consortium through the DAIAD system itself. All requests for support and reported issues, as well as the subsequent corrective actions were compiled on a daily basis. The above information was analyzed and compiled on a monthly basis in the form of an internal Monthly Reports, which were distributed amongst all Consortium members. These reports served as a basis for the current document, and supported executive decisions regarding the implementation of the Trial. A number of adjustments in the timing of the various phases in response to delays and anticipated risks were performed throughout the Trial, validating our decision to budget a priori the extra four months.

Overall, we consider Trial A to be extremely successful across all of its aspects, with AMAEM being responsible to the greatest degree for this outcome. The level of AMAEM’s commitment to the Trial is indicative both for its excellence as a water steward, as well as its strong belief regarding the potential impact of DAIAD. To the best of our knowledge, Trial A is the largest study of its kind in terms of duration and population, generating critical data and knowledge both the project and the research community at large.
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>S/N</td>
<td>Serial Number</td>
</tr>
<tr>
<td>SWM</td>
<td>Smart Water Meter</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction ... 9

2. Preparation Activities .. 10
 2.1. Participant recruiting .. 10
 2.1.1. Expression of interest ... 11
 2.1.2. Participant selection ... 12
 2.1.3. Equipment distribution ... 12
 2.1.4. Drop-outs .. 12
 2.1.5. In numbers .. 13
 2.1.6. Participant statistics ... 13
 2.2. Trial phases ... 15
 2.2.1. Phase 1 .. 16
 2.2.2. Phase 2 .. 16
 2.2.3. Phase 3 .. 17
 2.2.4. Phase 4 .. 18
 2.2.5. Phase 5 .. 18
 2.3. Monitoring .. 18

3. Trial Implementation and Evolution .. 22
 3.1. Original Planning .. 22
 3.2. Quarter 1 ... 24
6. Annex 3 — Trial Pre-survey ... 65

7. Annex 4 — Installation instructions ... 68

8. Annex 4 — Mode management notifications ... 69

 8.1. Phase 1 — Reminder .. 69
 8.2. Phase 2 (b1 ON/mobile OFF) ... 69
 8.3. Phase 2 (b1 OFF/mobile ON) .. 70
 8.4. Phase 3 ... 71

9. Annex 5 — Satisfaction survey .. 73
1. Introduction

This report presents the progress of DAIAD’s Trial A, which took place in Alicante from 1st March 2016 to 28th February 2017, with the participation of 102 households (293 consumers). The purpose of this report is to document the implementation and evolution of Trial A across its various phases and present all technical issues raised from DAIAD users (consumers and stakeholders). As such, this report serves two goals. First, support the evaluation and validation of the complete DAIAD system which will be provided in Deliverable D7.3 ‘Trials Evaluation and Social Experiment Results’. Second, assist researchers and water sector practitioners in understanding the scope and context of our experimental study, in order to complete their background knowledge or implement similar large-scale studies.

The remainder of this document is structured as follows.

In Section 2 we elaborate on the design of our experimental study, providing background information about the scope and goals of the Trial, the recruiting process and demographics of participants, as well as the instruments applied to monitor the pilot, collect issues/feedback and provide support.

In Section 3 we present the progress of the Trial during its 12month duration. Our presentation is organized on a quarterly basis, aiming to convey to the reader the actual evolution of the Trial in response to the challenges we confronted. For each quarter we provide a comprehensive list of all issues reported by the Trial participants, presenting for each one the troubleshooting and corrective steps we took. The diversity of the issues was astounding, yet anticipated, ranging from naïve to challenging, and confirmed the representative nature of our study group. Further, we provide the evolution of select KPIs throughout the duration of the Trial, highlighting select time periods and events of particular interest.
2. Preparation Activities

The preparation activities to ensure the successful implementation of Trial A were performed in the context of Task 7.1 and begun already from M3 of the project, comprising a series of intertwined technical, communication, and organizational activities supported by all partners.

The purpose of Trial A was to evaluate and validate DAIAD technologies in a top-down perspective, with DAIAD being offered as a service from the local water utility (AMAEM), with consumers having access both to their SWM data, and one or more amphiro b1 devices. Consequently, in Trial A we attempted to replicate for consumers the experience of DAIAD being offered as a new service from their water utility, as well as enable AMAEM’s experts to use DAIAD for water demand management. Towards this, AMAEM was portrayed as the system owner, requesting from its customers to assist in evaluating a new service before its roll-out across the entire population. Further, AMAEM handled all local communication activities and provided support services through its standard Helpdesk.

Preparation activities focused on delivering all material and processes required for the recruiting, training, support, and interaction with the pilot participants. In summary, this included: (a) invitations (printed, electronic) explaining in simple terms to scope of the pilot, means of participation, requirements, and process for expressing their interest (see daiad.eu/join), (b) pre-surveys (web-based) based on which the participants were selected (e.g. demographics, household characteristics), (c) the process for distributing and initializing the equipment (installation instructions), (d) the discrete phases of the pilot and specific goals for testing DAIAD components against a control group, (e) periodic surveys (web-based) for collecting feedback and insights from the participants, and (f) support instruments for addressing potential technical problems.

In the following sections we present the design of our experimental study, providing background information about the recruiting process and demographics of participants, as well as the instruments applied to monitor the pilot, collect issues/feedback and provide support.

2.1. Participant recruiting

Participation in the Trial was open in a voluntary basis for all AMAEM customers located in the City of Alicante that were served by a SWM (~100K households) and satisfied the minimum technical requirements of the Trial (see Annex 2 – Trial Guides).

The recruiting process begun in M16 with the goal of establishing a representative panel of 100 households. Volunteers were invited to join Trial A and express their interest, following an extensive communication campaign with focused dissemination and demonstration actions. Among others, these involved coverage from mass media (radio, TV), social media, participation in local events, demonstrations of the DAIAD system, meetings with local stakeholders (local utilities, NGOs/Citizen Associations, local government), preparation and distribution of advertising material, mail & email campaigns (within the periodic water bills), as well as specific-purpose sections in our web-site (daiad.eu/join, daiad.eu/es). After evaluating the expressions of
interest from volunteers, our final Trial participants were selected and contacted via AMAEM, ensuring the selection of an unbiased and representative population. The DAIAD system was shipped, distributed, and installed by trial participants, confirming its proper deployment by each participant after successfully receiving water consumption data.

In the following section we present the above activities in more detail.

2.1.1. Expression of interest

Applications for pilot participants have been publicly available in a specific section of our web-site: www.daiad.eu/join. This section included links to the web survey where volunteers can register as pilot participants, as well as links to two guides (short, long) in Spanish, in which the DAIAD project, the scope of the Trial and means for participation were presented in detail. The guides are provided in Annex 2 – Trial Guides.

The web survey (Google Forms) aimed to ensure that the basic technical requirements for DAIAD were satisfied from interested volunteers (e.g. mobile phone, internet access), as well as facilitate the Consortium into selecting an unbiased and representative sample of the population during the final selection of volunteers. The survey questions are provided in Annex I – Survey for expression of interest.

The open call inviting consumers to express their interest has been extensively disseminated by AMAEM through multiple channels in the context of WP7 (e.g. social media, media coverage, open events, school visits, meetings with local stakeholders). We have been monitoring the progress of registrations on a daily basis since M20, adjusting our communication actions accordingly. Towards this:

- AMAEM has made extensive use of its established channels of communication to disseminate the objectives of the Trial in mainstream media. This includes local TV, national/local newspapers and radio. Moreover, 10,000 leaflets have been distributed and 12,000 emails have been sent to AMAEM customers, bundled with the printed and electronic water invoices respectively. These served to inform AMAEM customers about the project, and invite participation in the Trial. Further AMAEM engaged local stakeholder groups interested in the Trial, including NGO “ASAFÁN” who works to defend the interest of large families, and the Volunteer group in favor of environment “GEA”.

- A new Spanish version of the DAIAD web site has been prepared under www.daiad.eu/es/. This has been deemed necessary by the Consortium in order to enlarge the targeted population in Alicante and enable all local citizens to be informed about the Trial in their native language. The web site includes key information about the DAIAD project, its planned impact, the local Trial, as well as the role of AMAEM. Overall, it has been extremely well received by the local population, and has been used in all dissemination actions in the area.

Our recruiting goal was reached by M22 (162 registrations), but we opted to maintain registrations open till M28 (229 registrations) in order to further enlarge the potential pool of participants. This was deemed necessary to allow us more flexibility in forming and maintaining a representative panel throughout the duration of the Trial.
2.1.2. Participant selection

Starting from M20, the Consortium begun evaluating expressions of interest and initiated the selection of the participants to be accepted in Trial A. All steps of the process were performed periodically until the Trial positions have been filled. In summary:

- We removed applications which did not cover the minimum technical requirements of the system, as well as applicants that were not served by a SWM.
- The participant short-list was distributed amongst the Consortium (including the survey responses) for another round of filtering aiming to ensure the representative nature of our panel. Consequently, and depending on the already filled positions, we gave priority to consumers with specific demographic criteria (e.g. large families, low income households).
- Each selected participant was contacted by email and was instructed to complete within 1 week an additional survey available in Annex 3 – Trial Pre-survey. The purpose of the survey was to (a) confirm the contact details of the participant, and (b) collect additional information about the household and its water consumption behavior. If the participant failed to reply, two follow-up emails were sent, after which the participant was removed from the short-list.
- Upon successful completion of the survey, each participant received an email confirming her official inclusion in the Trial, with instructions regarding the subsequent distribution of the DAIAD system.
- Finally, the participant was added in our white-list (thus allowing her to Sign Up) and her SWM data were integrated in the system.

2.1.3. Equipment distribution

All selected participants were notified by email that they could pick-up the DAIAD hardware (amphiro b1) from AMAEM’s offices. During their visit, AMAEM personnel validated their contact details, kept track of the distribution progress (participant and device S/N), provided a small demo of the system, and answered to any questions the participants had. The majority of participants received the equipment in this manner, with a few exceptions (e.g. incompatible working hours) where the equipment was handed out by AMAEM personnel to the participant's household. In cases where the participant failed to pick-up or receive the equipment, she was removed from the Trial and replaced with another participant from our pool of candidates.

Each package included a small leaflet in Spanish with instructions on how to install the DAIAD hardware and install the DAIAD software (Annex 4 – Installation instructions). The system’s installation and initialization was monitored remotely through the DAIAD system (see Section 2.3) on a daily basis, with AMAEM Helpdesk contacting consumers by email in case of delays and providing support to any issues the participants experienced.

2.1.4. Drop-outs

Since participation in the Trial was voluntary, participants had the option of opting-out of the Trial at any given time (drop-outs). Participants were requested to simply notify us in such cases, informing them in advance that they only had to return their equipment. Only three (3) consumers decided to be removed for the Trial for personal reasons, which returned their equipment and were replaced with another applicant.
from our pool of candidates. Further, we have been monitoring the system’s use for all participants and contacted users with no activity for more than one week. At all cases the participants were experiencing either a technical problem, or were away for vacations, and begun to properly use the system following our communication.

2.1.5. In numbers

The final synthesis of the Trial A panel is presented in the following tables and figures. The following terminology and conventions are used in the presentation that follows:

- **Volunteer.** Each Volunteer is an individual that has expressed her interest to join Trial A (see Section 2.1.1).
- **Participant.** Each Participant is a volunteer that has successfully joined Trial A and remained in the Trial for its entire duration. No two Participants are from the same Household (see below), hence each Participant represents a unique household.
- **Drop-out.** Each drop-out is a Participant that has been voluntarily removed from Trial A at any point of its duration. All instances and reasons for a drop-out are documented in the Issues sub-sections of Section 3.
- **Consumers.** Includes all household members of all Participants. We consider all Consumers as users of the DAIAD system, as they are exposed to the system’s interventions. For each household we have documented its exact number of members, age groups, and sex of its members.

<table>
<thead>
<tr>
<th>Volunteers</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>102</td>
</tr>
<tr>
<td>Drop-outs</td>
<td>3</td>
</tr>
<tr>
<td>Consumers</td>
<td>293</td>
</tr>
</tbody>
</table>

Table 1: Summary of Trial A Panel

2.1.6. Participant statistics

In the following figures we present select statistics for our Participants and Consumers based on the two surveys completed before the start of the Trial (Section Annex I – Survey for expression of interest, Annex 3 – Trial Pre-survey).
Figure 3: Participant education

- Educación Primaria Obligatoria: 7%
- Educación Secundaria Obligatoria: 19%
- Bachillerato o Ciclo Formación Graduado: 7%
- Graduado o Ciclo Formación Graduado Superior: 17%
- Máster: 5%
- Doctorado: 42%

Figure 4: Participant mobile phone OS (main device)

- iOS: 26%
- Android: 74%

Figure 5: Participant gross income

- <1K: 15%
- <5K: 8%
- 5K-20K: 11%
- 20K-50K: 12%
- 50K-100K: 11%
- 100K+: 8%

Figure 6: Participant household size (in square meters)

- 15-50: 30%
- 51-100: 10%
- 101+: 50%

Figure 7: Number of b1 devices installed per household

- One: 71%
- Two: 29%

Figure 8: Number of Household members

- 1: 17%
- 2: 13%
- 3: 27%
- 4: 23%

Figure 9: Consumer sex

- Females: 50%
- Males: 50%

Figure 10: Consumer adults and minors

- Minors: 41%
- Adults: 59%
2.2. Trial phases

Trial A comprised five (5) individual treatment phases, with each one focusing on collecting baseline water consumption data or evaluating a specific subset of the system’s interventions. The phases and the overall experimental design of the Trial was established in M15, with the aim to maximize the studied interventions and insights, without however over-taxing the Trial panel with frequent changes in the DAIAD applications. Overall, the following considerations influenced the design of the treatment phases, as well as their implementation:

- **Real-world operation.** Trial A studies the application of the DAIAD system in a top-down perspective, i.e. as a new service provided by the local water utility to its customers. As such, these conditions need to be respected at all phases of the Trial. Consequently, in Trial A we aimed to replicate for consumers the experience of DAIAD being offered as a new service from their water utility, as well as enable AMAEM’s experts to use DAIAD for water demand management. Towards this, AMAEM was portrayed as the system owner, requesting from its customers to assist in evaluating a new service before its roll-out across the entire population. Further, AMAEM handled all local communication activities and provided support services through its standard Helpdesk.

- **Streamline participation.** The participation in a 12-month Trial can be especially challenging, requiring a small, yet critical level of commitment from its users. Since the participants of Trial A are volunteers, i.e. actual consumers of AMAEM with diverse demographics and technical knowhow, it was imperative that we provided in advance full transparency over their required involvement, while also keeping their overhead to the absolute minimum. Towards this, the treatment phases and the required involvement of each participant were established and communicated to candidates before the recruiting process begun (see Annex 2 – Trial Guides). In addition, during the first and more challenging phases of the Trial (when participants installed, were acquainted, or did not yet have full access to the applications) participants were notified via in-app and email notifications (see Annex 5 – Mode management notifications) regarding any substantial changes in the application and its functionality, before it took place.

- **Avoid bias.** The interventions that would be tested at later phases of the Trial, needed to remain hidden from participants. This significant detail is unfortunately neglected in other studies and work, contaminating the target/control groups of the study, and thus introducing bias that warrants any validation results void. Towards this, interventions throughout the duration of the Trial were either completely hidden from participants (appearing only in a hidden debug mode), or introduced through standard app updates. In addition, the design artifacts for these interventions, relevant source code, and documentation, remained private until the corresponding treatment phase ended. Finally, improvements in the already published interventions and major UI changes were not rolled-out to participants, until after the official end of the Trial.
2.2.1. Phase 1

Phase 1 is focused on validating the proper installation of the DAIAD system and collecting baseline water consumption data, without providing any interventions to participants. Consequently, it allows us to capture the typical water consumption behavior of participants and use this data to discover any changes in water consumption habits at later stages of the Trial. Understandably, it is the most critical phase of the Trial for a number of reasons. First, participants will be completely unfamiliar with the system and its components, thus a learning period is expected. Given the diversity of our panel, this can be very steep for certain individuals (e.g. low familiarity with ICT, older members). Second, a number of technical issues are expected to appear in the real-world, as it is the norm for any ICT system when entering a real-world beta evaluation. Finally, potential failure to collect accurate and representative baseline shower consumption data from the b1 device (SWM data are available from AMAEM’s smart metering infrastructure), means that assessing the effectiveness of the system to induce sustainable changes in shower consumption behavior will not be possible.

In summary, this is the experience of our participants during this Phase:

- The participant has received one or more amphiro b1 devices (for households with more than one showers) and an email inviting her to install the system using the provided instructions (see Annex 4 — Installation instructions).
- The participant installs the b1 devices, downloads the DAIAD application, and follows a wizard (i.e. guide by guide steps) presented during Sign Up.
- After completing the process, the LCD displays of the amphiro devices remain inactive (i.e. no real-time/in-situ interventions are provided). Further, the mobile application only presents a message informing the participant that the system is in ‘Learning mode’, thus similarly providing no interventions.
- The participant is requested to just continue with their typical every day activities. In the background, the amphiro b1 devices store any shower events taking place transmitting them via the mobile application when in vicinity, and then back to our monitoring services. Similarly, the total water use of the household is collected from its installed SWM, retrieved from AMAEM’s smart metering infrastructure, and stored in the DAIAD system.

2.2.2. Phase 2

Phase 2 is focused on comparing the effectiveness of analytical vs. real-time feedback. Our Trial panel is divided into two (2) sub-groups, with each one gaining access to either our analytical or real-time interventions. Real-time interventions are provided by the amphiro b1 devices, and analytical interventions are provided by DAIAD’s mobile application. It is important to mention that this is the point in time during which participants actually obtain their first experience into the actual interventions of the DAIAD system, seeing it working for the first time.

In summary, this is the experience of our participants during this Phase:

- Each participant receives an email (see Annex 5 — Mode management notifications) informing her that the Learning period is complete, and that she now has access to the DAIAD system.
• If the participant is a member of the ‘Analytical’ group, the next time she opens her mobile application a message informs her the mobile application is now active and that the LCD display of the amphiro b1 will remain inactive.
 o The amphiro b1 device continues to store all shower events taking place transmitting them via the mobile application when in vicinity, and then back to our monitoring services.
 o The mobile application presents analytical interventions using data from the smart water meter and the amphiro b1 data received.

• If the participant is a member of the ‘Real-time’ group, she is requested to have her mobile device near the shower (3-5 meters) next time she takes a shower (and repeat this process for all b1 devices installed). The LCD of the amphiro b1 will turn on, while her mobile application will remain inactive.
 o The amphiro b1 device presents in real-time interventions about the current shower. Further, it stores all shower events taking place transmitting them via the mobile application when in vicinity, and then back to our monitoring services.
 o The mobile application presents a message informing her that it will remain inactive for a few weeks.

2.2.3. Phase 3

In this phase all participants gain access to both analytical and real-time interventions, with the exception of social comparisons. This means that the LCD of the b1 device and the mobile application will become active for all participants. As such, it allows us to compare study how water consumption habits are affected by the simultaneous delivery of both types of interventions, and evaluate the preferences of users.

In summary, this is the experience of our participants during this Phase:

• Each participant receives an email (see Annex 5 — Mode management notifications) informing her that she now has full access to the DAIAD system.

• If the participant was a member of the ‘Analytical’ group, she is requested to have her mobile device near the shower (3-5 meters) next time she takes a shower (and repeat this process for all b1 devices installed). The LCD of the amphiro b1 will turn on.

• If the participant was a member of the ‘Real-time’ group, the next time she opens her mobile application a message informs her the mobile application is now active.

• For all participants:
 o The amphiro b1 device presents in real-time interventions about the current shower. Further, it stores all shower events taking place transmitting them via the mobile application when in vicinity, and then back to our monitoring services.
 o The mobile application presents analytical interventions using data from the smart water meter and the amphiro b1 data received.
2.2.4. Phase 4

This phase focuses on studying the effects of social comparisons regarding water consumption, and covers all analytical interventions comparing the user’s water use (actual and ranking) against similar households, neighboring households, or an entire city. Our Trial panel is divided into two (2) sub-groups, with the first gaining access to these type of analytical interventions through their mobile application, while the second serving as the control group (i.e. not having access to these interventions).

In summary, this is the experience of our participants during this Phase:

- The treatment group receives an in-app notification (i.e. ‘Alert’) informing them that a new section of the app has been enabled. From this point on, participants have access to the social comparisons.
- The control group is not contacted, nor gains access to additional functionality.

2.2.5. Phase 5

In this last phase, the control group of Phase 4 also gains access to social comparisons, hence the entire population of our study has access to the entire functionality of DAIAD. This phase allows us to evaluate the retention of water savings when exposed to interventions in a prolonged time-frame.

2.3. Monitoring

The activity of all Trial participants, from the sign-up process to the actual system operation, was remotely monitored by the Consortium through a proprietary Web-based monitoring environment integrated in the DAIAD system. These services have been developed with a dual purpose; assist us in monitoring the Trial and facilitate any future custom study by water utilities employing the DAIAD system.

In summary, the DAIAD’s monitoring environment provides the following facilities:

- Mode Management. The service provides fine-grained remote control and monitoring services over the mode of the system, per individual user. As such, it enables the assignment of each participant to a specific Trial Phase after examining the status (e.g. Phase duration, collected data, activity) of each participant. Additional services include searching and filtering (user, group, Phase), accessing system logs for a specific user (e.g. to troubleshoot or accurately monitor the transition between phases), as well as links to the detailed User’s Activity (see below).
Trial Activity. The service provides a high level overview regarding the progress of the entire Trial and its Phases. In summary, it offers a real-time status over the current Phase of all participants, search facilities for a specific user (based on name, surname, email, SWM ID), visualization services for a user’s water consumption (SWM and amphiro b1 devices), as well as download services for all water consumption data (SWM and amphiro b1 devices) for a specific user in csv format. The latter is particularly important, as it allows us to easily monitor extractions during the installation steps, ensure the device operates within its working parameters, and identify potential communication or operation issues.
User Activity. This service provides access to the complete information the system has for an individual user. This includes her profile (e.g. name, surname, email, address, gender, age, mobile phone/tablet OS), the groups she belongs to (e.g. age, household size, number of members), the available data sources (i.e. SWM and one or more amphiro b1 devices) with additional information for each one (e.g. device ID, last measurement, application mode, last communication), and finally an overview of her water consumption (SWM, amphiro b1) for the last 30 days.

Trial Reports. This service generates automatically all KPIs regarding the progress of the Trial on a monthly basis, facilitating the preparation of our internal Monthly Reports.
Figure 15: Trial reports
3. Trial Implementation and Evolution

Trial A officially started on 1st March 2016 (M25), after a one-year period of preparation and participant recruiting. In the following sections we present the evolution of the Trial on a quarterly basis, based on the internal Monthly Reports prepared by the Consortium during the actual implementation of the Trial. First, we briefly present our original planning for the timeline of the Trial established in M15. In the following subsections, we present for each quarter a summary of the Trial’s progress, the targeting of the reference period, all technical issues reported and the corresponding corrective actions, an overview of our KPIs, as well as any anticipated risks for the following quarter.

3.1. Original Planning

The Trial comprised five (5) treatment phases for the participating population spanning nine (9) months, as well as three (3) months as leeway to account for unforeseen delays. The planning of the Trial was established on M15 and served as our guideline for all relevant technical, organizational, and communication tasks.

![Figure 16: Trial Original Timeline](image)

Our original decision for a 12-month duration of the Trial was necessitated by the strong seasonal nature of water consumption. As extensively documented in the literature, domestic water use is affected by a number of factors, such as temperature, precipitation, holidays, etc. This critical detail is all too often neglected in similar studies, leading to wrong results which cannot be reproduced and thus applied in practice. For example, a study of water consumption beginning in the month of September and lasting for 3 months, is guaranteed to reveal strong reductions in water use (20%-30%).

![Figure 17: Seasonal effect in consumption](image)
In Figure 17 we present the total water use of our Trial A Panel for Sep-Oct 2015 (blue line), i.e., before the Trial has started and well before participants were even recruited. As it is apparent, had our Trial begun in September, then we would observe a **22% reduction** in water use, which is attributed **entirely** to the seasonal characteristics of water use. Therefore, studies for interventions where the time period is **small or adjusted** to coincide with the seasonal drops in water use, are almost certainly void. These may be interpreted as **effective water interventions**, but in reality, the ‘strong savings’ are simply a **misinterpretation** of the naturally occurring reduction in water use after summer. We have taken extra care to account for all such seasonal factors and select appropriate control groups and baselines for our study.

In addition, it is important to emphasize that the timing and duration of the Phases correspond to the **minimum time a single participant** must spend in each Phase. Consequently, at any given point in time during the Trial’s duration, we may have consumers in more than one Phase. As explained in Section 2.3, DAIAD offers integrated facilities for **remotely** altering the mode of the system, for each individual consumer (i.e. ‘Mode Management’). This provided us with a very fine-grained control over the Phase each participant is in, and negates the need for synchronizing the treatment phases of the entire population. Our approach is another novelty in the study of water efficiency, as well as a major of advantage of DAIAD over other systems. The decision to follow this route was taken during M13 of the project and for the following reasons:

- **The DAIAD Trials comprised multiple treatment phases**, instead of just one, which is the norm for similar studies and projects. Instead of simply providing the system to all participants at the **same time** and studying its effects over a specific period (e.g., 3 months), our goal since the **inception** of the project was to study and compare **multiple** intervention types and approaches. This decision certainly perplexed the design, monitoring, and analysis of the Trial, but also significantly **increased its value**.

- Objectively studying and analyzing the effects of various water monitoring systems regarding water efficiency is a point of concern for the water sector, making reasoning about the effectiveness and real world adoption of ICT challenging. As mentioned previously, the vast majority of relevant studies cannot be objectively validated and reproduced. Consequently, we decided to integrate facilities for performing arbitrary treatment studies within DAIAD itself, enabling each water utility to perform its own water efficiency study in terms of interventions, participants, duration, etc. At a later stage, our business monitoring activities in the context of WP8 revealed that the few ICT systems competing with DAIAD offer similar, yet narrower functionality, thus affirming our original decision.

- **Our partners Amphiro and UNI BA have performed numerous similar studies in the past**, comparing the effectiveness of various interventions types (**A-B, multi-variate testing**). A critical observation and knowhow from these studies concerned the extreme difficulty for ensuring all participants were synchronized across the various treatment phases. The real-world challenges in coordinating **volunteers** into performing simple, yet time-critical steps (e.g. **download a new app, take a shower**) while simultaneously managing technical issues (e.g. **sensor malfunction**), leads to significant delays, constant timeline adjustments, user frustration (**also leading to drop-outs**), and hinders data post-processing. With the DAIAD system being much more complex, we anticipated these problems to significantly increase.

The planned Phases of the Trial and their duration are as follows:
• **Phase 1 (1.5 months).** This phase is focused on validating the proper installation of the DAIAD system (hardware and software) from consumers, providing any assistance if needed. Further, during this phase we collect baseline water consumption data for all participants. As analyzed in Section 2.2.1, as soon as a consumer successfully initializes the DAIAD system, she enters the system’s ‘Learning mode’. On average, this selected duration would allow us to establish a baseline of at least 40 showers per household, which is in line with similar studies we have performed in the past. Note that this phase is only required for establishing the baseline of water use in the shower and not for their total water consumption. For all participating consumers we had full access to their SWM data for at least two years before the start of the Trial.

• **Phase 2 (2 months).** During this phase we compare the effectiveness of analytical vs. real-time feedback. The extended duration of this phase is required for two reasons. First, it would be the first actual experience consumers would have using the DAIAD system. Second, it studies a critical issue for water efficiency. Real-time interventions for water use have been shown from other studies to be more effective than analytical interventions. However, real-time interventions are significantly more expensive to provide and challenging to roll-out in the entire population. In contrast, analytical interventions are easier and less expensive to offer, but less effective.

• **Phase 3 (1 month).** During this phase all participants gained access to the entire DAIAD functionality, with the exception of social comparisons. The one-month duration was considered adequate, as participating consumers would already be familiar with the DAIAD system, and simply be exposed to one additional type of intervention.

• **Phase 4 (2 months).** During this phase we established a control group and provided the remaining consumers access to social comparisons. The expanded duration of the phase was required by its particular focus. Interventions tapping into social norms and gamification have been validated in other domains as strong influences of personal behavior. However, ample time is required for the ‘social effect’ to take place; competing against others, setting collective goals, and allowing a sense of community to form, cannot be rushed.

• **Phase 5 (1.5 months).** During this phase all consumers gained complete access to the DAIAD system. An extra 4 months were budgeted as leeway to address any unforeseen delays or issues affecting the implementation of the Trial. These months were to be used to expand particular Trial Phases or test additional interventions.

3.2. Quarter 1

3.2.1. Period summary

The DAIAD Trials have officially started on 1st March 2016, after a yearly long period of preparation and participant recruiting. During this period, our efforts have been focused on the distribution of DAIAD’s hardware (amphiro b1), the provision of support to participants for downloading, installing and initializing
the DAIAD mobile application, as well as on the management of any organizational and technical issues related to the initialization of the DAIAD system.

The distribution and initialization of the DAIAD system has been completed at the end of this period, with all participants successfully entering the Phase 1 of the Trial. In addition, a small number of participants (~10%) have entered Phase 2 of the Trial.

We have experienced a number of delays and issues regarding the installation and initialization of the DAIAD system, mostly attributed to the participant’s availability and schedule considerations. In summary, the distribution of the DAIAD hardware was postponed due to the Easter vacations, as both personnel and customers were largely not available during that period. The first series of user requests for support revealed a number of issues related to the expanded nature of the Trial in Alicante (large families, multiple amphiro devices per household). As such, it was deemed necessary to pause the distribution of hardware for 2 weeks to better prepare the Helpdesk for handling and troubleshooting these issues.

More importantly, interacting, motivating, and maintaining a momentum with our Trial participants has proven more challenging than anticipated. However, this was a welcomed side-effect of the Trial’s real-world nature and representative Trial population. After receiving their equipment, participants needed to be reminded several times (typically 2-5) to install it. Similarly, delays in the email communication after a user inquiry were all too frequent (4-10 days) or even neglected. For example, even a simple user request on how to Sign Up (the user pressed Sign In instead of Sign Up) was handled by the Helpdesk within the hour, but the user either did not reply back, or followed our advice after 1 week. DAIAD’s analytics allowed us to remotely monitor the user’s activity and thus complete our missing knowledge. In addition, during the first 4 weeks a number of critical bugs were discovered by our users, as well as several incompatibility issues with low-cost Android devices. These were successfully addressed by the Consortium, but delayed the initialization process for a number of users. Finally, in certain cases our technical support even extended to house visits in order to troubleshoot installation and initialization issues.

In terms of technical issues, their majority concerned the pairing process of b1 device (see Issues for details) and was caused by one or more of the following:

- **Unsupported mobile device.** The user attempted to pair the b1 with an unsupported device. The list of supported devices has been communicated several times to users, while users were explicitly required to confirm twice that they had a compatible device during the recruiting process. Further, with DAIAD being compatible with 95% of current devices sold in the market, the compatibility problems affect mobile devices at least 3 years old or extremely low-cost Android devices.

- **Android BT stack.** The implementation of the BT software stack from several device manufacturers (especially high volume/low cost devices) is slow and even non-conformant to the relevant standards. In these cases, the user experiences a long delay to complete the pairing process (e.g. 1-10 min instead of 5-10 sec). We have addressed most of these delays by refactoring our BT connection stack and developing proprietary libraries for specific devices.

- **Amphiro b1 malfunction.** For 3 b1 devices used for internal testing, the integrated BT radio of the b1 would not work, or operate intermittently. The result was failure to complete the pairing process, dirty data, or complete failure to transmit real-time water consumption data. Such cases have not been identified in Q1, but we expect them to be reported by users in the upcoming period.
• **Additional b1 pairing.** The user could not connect a second or third b1 device, despite having successfully connected the first one. After extensive testing we confirmed that this was not caused by a system bug, but from one of the above reasons.

In terms of anecdotal information, the increased communication and interaction with Trial participants during this period, was a source of great informal feedback. There was a broad feeling of anticipation for the Phase 2 of the Trial (i.e. access to DAIAD system), which climaxed during the end of the quarter. Participants were really anxious to begin using the system after successfully installing it in their households. We reminded them several times that the ‘waiting’ period is necessary to collect baseline data, and asked for their patience. Further, we received a number of comments (especially from large families) that the DAIAD system covers an important need in their households; to train and guide their children towards water efficiency.

A really impressive email was received during the selection period; we reproduce it below (*in English, translated from Spanish*) as a sample of a new generation of consumers, which are more environmentally aware and technological savvy.

`````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````````
Finally, the end of Q1 finds the Trial delayed by 1.5 months compared to our original schedule. It is important to highlight such delays were anticipated already by the planning phase of Trial, by budgeting 4 months as a leeway in case of technical and/or organizational difficulties. Consequently, the overall picture regarding the progress of the Trial in the course of this period remains positive.

3.2.2. KPIs

In this section we provide the evolution of select KPIs presenting the progress of the Trial A in Q1, highlighting specific periods and/or events of particular interest.

3.2.2.1. Participants per Phase

The installation and initialization of the system (Phase 1) progressed at a lower rate than anticipated due to the issues encountered by participants, which are elaborated on the next section. However, by the end of Q1 all participants had successfully entered Phase 1 of the Trial, with a small number of participants (~10%) even progressing to Phase 2.
3.2.2.2. **Water Consumption (SWM)**

[Figure 19: Total daily consumption for Q1 (liters)]

The total daily consumption of our Panel for Q1 is normal, with consumption patterns accurately reflecting the periodicity (working days, week-ends) of water use.

3.2.2.3. **Water Consumption (shower)**

[Figure 20: Total daily shower consumption for Q1 (liters)]

With the large majority of consumers in Phase 1 and Phase 2, the transmitted shower use from the amphiro b1 devices is expectedly very low (also see next KPI). As analyzed in Deliverable D1.2, shower events are transmitted from the b1 devices in an opportunistic manner. When the user’s mobile device is within working BT range of the b1 during a shower, then we receive the real-time shower information (*i.e.*, a full time-series of water, temperature and flow) along with historical shower data stored within the b1 (*i.e.*, shower events not captured in real-time). Specifically, in Phase 1 the system provides no interventions (*mobile and b1 displays are*...
so the users due to lack of familiarity and incentive, largely do not have their mobile devices in proximity of the b1 during a shower event. In addition, we observe that as consumers gain access to Phase 2, the number of shower events captured from the b1 devices and transmitted to the system increase as expected.

3.2.2.4. Shower events

![Figure 21: Shower events (total, real-time, historical) for Q1](image)

During this period, we captured in total 544 shower events, of which 230 are real-time shower events and 314 historical shower events. For the reasons explained in the previous sub-section, we can observe the low number of transmitted shower events during Phase 1, and the expected increase during Phase 2.

3.2.2.5. Amphiro b1 malfunctions

During this period, no problems were reported with the 184 deployed b1 devices.

3.2.2.6. System availability (uptime)

![Figure 22: Daily system availability (% of time within a day system was available)](image)
All interruptions in the system's availability during Q1 were *scheduled* down-times (maintenance/upgrades).

### 3.2.3. Issues

The following table presents the issues we addressed during Q1 of Trial A, and the corrective steps we took in in order to explore, analyze, and address them.

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Problem Description</th>
<th>Corrective Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/04/2016</td>
<td>• Amphiro’s b1 display, melting iceberg. A participant contacted us by email and asked when the iceberg which is displayed at the b1 LCD disappears.</td>
<td>We informed the user that the iceberg displayed at the LCD of amphiro b1 disappears when the energy class of hot water while showering switches to F+. This corresponds to a water temperature of approximately 38-39°C and a water volume of 80 liters.</td>
</tr>
<tr>
<td>2</td>
<td>11/05/2016</td>
<td>• Bluetooth connection problem. A user contacted us by email reporting a problem connecting the amphiro b1 with the DAIAD app during the initialization steps.</td>
<td>We provided the user with suggestions to address the most common technical issues. The user updated the DAIAD app and she reported us that she successfully paired the amphiro b1 with her mobile device.</td>
</tr>
<tr>
<td>3</td>
<td>11/05/2016</td>
<td>• Sign-up problem. A user contacted us by email reporting that she could not Sign Up in DAIAD’s mobile application.</td>
<td>The issue was caused by a delayed transfer of the participant's details in the Trial's Whitelist. This process is manual in order to ensure that all participants have responded in both required surveys, have responded to email communication, and that they fully satisfy the minimum requirements (technical, demographics, etc.) for our study. As a result, delays of 1-2 working days in manually importing a participant in the DAIAD Whitelist are expected. The participant was imported in our Whitelist and notified to proceed with the Sign Up process. The user reported us that she successfully completed the Sign Up process.</td>
</tr>
<tr>
<td>4</td>
<td>12/05/2016</td>
<td>• Unsupported device. A user contacted us by email reporting a problem connecting the amphiro b1 with her mobile device.</td>
<td>We provided the user with suggestions to address the most common technical issues, which revealed that the user has installed the app in an unsupported device (iPhone 4). We</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>12/05/2016</td>
<td>Data transmission problem. A user contacted us by email reporting that her mobile device could not be paired with the second amphiro b1 in the household.</td>
<td>We provided the user with suggestions to address the most common technical issues. We also informed her that she will be able to pair the second amphiro b1 when the 'Normal mode' will be enabled.</td>
<td></td>
</tr>
<tr>
<td>13/05/2016</td>
<td>Unsupported device. A user contacted us by email reporting a problem connecting the amphiro b1 with the mobile device (Windows phone).</td>
<td>We informed the user that Windows phones are not currently supported and advised her to use an alternative compatible device. She replied that a compatible mobile device is available and that she will pair it with the amphiro b1. In the following days we observed from our monitoring UI that the user has successfully completed the pairing process.</td>
<td></td>
</tr>
<tr>
<td>16/05/2016</td>
<td>Pairing second b1. A user contacted us by email reporting that her mobile device cannot be paired with the second amphiro b1 in the household.</td>
<td>We provided the user with suggestions to address the most common technical issues. We also informed her that she will be able to pair the second amphiro b1 when the 'Normal mode' will be enabled. The showers will be stored in the device's internal memory, so no further action is required.</td>
<td></td>
</tr>
<tr>
<td>17/05/2016</td>
<td>Pilot drop-out. A user contacted us by email informing us about her intention not to participate in the pilot. The reason was her repeated failure to complete the pairing process.</td>
<td>We provided the user with suggestions to address the most common issues. However, the user requested to be removed from the Trial and return the device. The equipment was returned and allocated to another participant within 3 weeks.</td>
<td></td>
</tr>
<tr>
<td>18/05/2016</td>
<td>Unsupported Android device. A user contacted us by email reporting a problem connecting the amphiro b1 with her mobile device.</td>
<td>After providing the user with suggestions to address the most common technical issues, the user responded that her mobile device (Android v4.2) wasn't compatible with the minimum requirements. After a few days, she reported that there is an available mobile device in the household which satisfies the minimum requirements.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19/05/2016</td>
<td>• Pairing second b1. A user contacted us by email reporting that her mobile device cannot be paired with the second amphiro b1 in the household.</td>
<td>We provided the user with suggestions to address the most common technical issues. We also informed her that she will be able to pair the second amphiro b1 when the 'Normal mode' will be enabled. The showers will be stored in the device's internal memory, so no further action is required.</td>
</tr>
<tr>
<td>11</td>
<td>19/05/2016</td>
<td>• Sign-in problem. A user contacted us by email reporting a problem signing-in the DAIAD app.</td>
<td>This was not caused by a technical issue, but from the user selecting 'Sign Up' (i.e. create an account) rather than correctly proceeding with 'Sign-in'. We gave the user detailed instructions on how to correctly 'Sign-in' the DAIAD app.</td>
</tr>
<tr>
<td>12</td>
<td>24/05/2016</td>
<td>• Mode change (b1 ON). A user contacted us by email reporting that the LCD of her amphiro b1 device remained disabled.</td>
<td>We provided the user with suggestions to address the most common technical issues. In the following days, she reported that the LCD was successfully enabled.</td>
</tr>
<tr>
<td>13</td>
<td>24/05/2016</td>
<td>• Pairing second b1. A user contacted us by email reporting that her mobile device cannot be paired with the second amphiro b1 in the household.</td>
<td>We provided the user with suggestions to address the most common technical issues. We also informed her that she will be able to pair the second amphiro b1 when the 'Normal mode' will be enabled. The showers will be stored in the device's internal memory, so no further action is required.</td>
</tr>
<tr>
<td>14</td>
<td>25/05/2016</td>
<td>• Unsupported iOS device. A user contacted us by email reporting a problem connecting the amphiro b1 with her mobile device.</td>
<td>We provided the user with suggestions to address the most common technical issues, which revealed that the user has installed the app in an unsupported device (iPhone 4). We reminded the user the minimum requirements for the DAIAD mobile application (i.e. Android 5.0, Bluetooth 4.0). The participant reported that she used a compatible mobile device which was successfully paired with the amphiro b1.</td>
</tr>
<tr>
<td>15</td>
<td>25/05/2016</td>
<td>• Unsupported Android device.</td>
<td>We provided the user with suggestions to address the most common technical issues, which revealed that the user has installed the</td>
</tr>
</tbody>
</table>
A user contacted us by email reporting a problem connecting the b1 with the DAIAD mobile app during the initialization steps. We reminded the user the minimum requirements for the DAIAD mobile application (i.e. Android 5.0, Bluetooth 4.0). The participant reported that she used a compatible mobile device which was successfully paired with the amphiro b1.

This was not caused by a technical issue, but from the user selecting 'Sign Up' (i.e. create an account) rather than correctly proceeding with 'Sign-in'. We gave the user detailed instructions on how to correctly 'Sign-in' the DAIAD app.

We updated the user’s location in DAIAD system and informed her by email that the problem was resolved.

We provided the user with suggestions to address the most common technical issues. We also informed her that she will be able to pair the second amphiro b1 when the 'Normal mode' will be enabled. The showers will be stored in the device’s internal memory, so no further action is required.

| Table 2: Q1 Issues |

### 3.2.4. Risks

We anticipate the following risks for the next period of the Trial.

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk</th>
<th>Contingency Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malfunctioning b1 devices</td>
<td>The risk is small, as currently more than 99% of the distributed devices operate trouble-free. We will be monitoring the pilot for any technical issues, replace the devices when needed, and study them to identify any systematic technical problems.</td>
</tr>
<tr>
<td>2</td>
<td>Delays in the Whitelist update process</td>
<td>The risk is small as it relates only to the next period, and may affect at most 3-5 users. We have accelerated the manual process.</td>
</tr>
</tbody>
</table>
approval process, but we will not automate it completely (although it is technically feasible).

Table 3: Q1 risks

3.3. Quarter 2

3.3.1. Period summary

During this period, our efforts were focused on providing technical support to participants, collecting their feedback, and maintaining active communication with the system’s administrators in order to rapidly identify and address all issues encountered by users.

A highlight of our efforts has been the OpenWaterDay organized in Alicante, in which our participants were invited to meet the DAIAD team, learn more about the project, and provide their feedback. A number of users participated in our OWD Workshop for water innovation, contributing with novel ideas for improving DAIAD and expanding its user base. Further, a number of users were interviewed by the Consortium and were added in the project’s video, offering their own honest views about the system.

Overall, it has been an extremely intensive period in terms of providing support to our participants and evaluating all reported issues. With the majority of our panel gradually moving between Phases, being introduced to new interventions, and gaining access to the entire DAIAD system, this level of activity was anticipated by the Consortium. In this respect, the vast majority of issues was not technical in nature, but attributed from the impatience of our participants to gain full access to DAIAD. This is a very positive finding, as it vividly demonstrates the genuine interest of our participants in using DAIAD to its full degree. However, it also meant that we had to keep reminding our panel the specific purpose and scope of the experimental study (as established already from their recruiting and communicated via email), advising them to be patient, and keeping them engaged. Another great source of support inquiries was caused by the users not having correctly paired their additional b1 devices (2nd, 3rd) during Phase 1, and against the specific instructions provided to them. Again, we had to nudge the users towards respecting the experimental protocol and reassure that they would have full access to the DAIAD system pretty soon.

In terms of technical issues, their majority concerned the operation of the b1 (see Issues for details) and was caused by one or more of the following:

- **Amphiro b1 malfunction.** In seven (7) cases (out of 184 devices) the integrated BT radio of the b1 would not work, or operate intermittently. The result was failure to complete the pairing process, dirty data, or complete failure to transmit real-time water consumption data. In all these cases the devices were replaced and delivered to Amphiro for further analysis.

- **Additional b1 pairing.** The user could not connect a second or third b1 device, despite having successfully connected the first one. After extensive testing, we confirmed that this was not caused by a system bug, but from the user not having completed the process during the initial installation.

Finally, the end of Q2 finds the Trial delayed by 2 months compared to our original schedule. As explained, such delays were anticipated already by the planning phase of Trial, by budgeting 4 months as a leeway in
case of technical and/or organizational difficulties. Consequently, the overall picture regarding the progress of the Trial in the course of this period remains positive.

3.3.2. KPIs

In this section we provide the evolution of select KPIs presenting the progress of the Trial A in Q2, highlighting specific periods and/or events of particular interest.

3.3.2.1. Participants per Phase

The progression of all Trial participants towards Phase 2 continued during the first weeks of Trial A and was completed by week 6. As explained in the previous sections, in Phase 2 our participants were split into two groups, with the first gaining access only to real-time interventions (i.e., b1 display ON) and with the second gaining access only to diagnostic interventions (i.e., mobile app ON).
3.3.2.2. Water Consumption (SWM)

The total daily consumption of our Panel for Q2 is normal, with consumption patterns accurately reflecting the periodicity (working days, week-ends, public holidays) of water use.

3.3.2.3. Water Consumption (shower)

The daily volume of transmitted showers from our Trial participants rapidly increased as expected, with a visible peak around days 26-32, during which a new app update increased the throughput for receiving historical showers (hence a high number of historical showers were retrieved these days). Further, the time-series accurately reflects the periodicity (working days, week-ends, public holidays) of shower use, with patterns its visible throughout the period.
3.3.2.4. Shower events

During this period, we captured in total 3,918 shower events, of which 1,451 are real-time shower events and 2,467 historical shower events. As we can observe, the number of historical showers increased after the introduced mobile app update mentioned in the previous section, and is directly responsible for the increase in total shower events (*real-time showers remained practically stable throughout the period*).

3.3.2.5. Amphiro b1 malfunctions

During this period, seven (7) out of 184 deployed b1 devices (3.8%) were reported as malfunctioning and replaced accordingly.

3.3.2.6. System availability (uptime)

*Figure 26: Shower events (total, real-time, historical) for Q2*
All interruptions in the system’s availability during Q2 were scheduled down-times (maintenance/upgrades).

### 3.3.3. Issues

The following table presents the issues we addressed during Q2 of Trial A, and the corrective steps we took in order to explore, analyze, and address them.

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Problem Description</th>
<th>Corrective Steps</th>
</tr>
</thead>
</table>
| 19 | 01/06/2016 | • Previous version of mobile app installed  
A user contacted us by email reporting a problem connecting the b1 with the DAIAD mobile app during the initialization steps. | After consulting DAIAD’s user logs, the user was instructed to update the DAIAD mobile app at the latest version, which included manifold improvements for the Bluetooth pairing process. After updating the DAIAD mobile app, the b1 was successfully paired. |
| 20 | 01/06/2016 | • Learning mode  
A user contacted us telling that her app was ‘locked’ | The user had misinterpreted the message presented during the Learning mode (Phase 1), believing that she could not use the app because it was ‘locked’. We reminded the user about the purpose and duration of the Learning mode. |
| 21 | 01/06/2016 | • Amphiro b1 pairing  
A user contacted us by email reporting a problem connecting the b1 with the DAIAD mobile app. | The user was invited to visit Aguas de Alicante, where Consortium members demonstrated the pairing process using our demo b1 devices. Following this demonstration, the user successfully paired her amphiro b1 device. |
| 22 | 02/06/2016 | • Learning mode  
A user contacted us telling that the app seems to be ‘locked’ because the Learning mode remained active. | We reminded the user about the purpose and duration of the Learning mode, advising her to be a bit more patient (she had only completed a few days in Learning mode). After 3 weeks and evaluating the collected baseline data, the user was moved to Phase 2. |
| 23 | 03/06/2016 | • Sign-up problem  
A user reported that she could not Sign Up in the mobile app | The issue was caused by a delayed transfer of the participant’s details in the Trial’s Whitelist. The participant was imported in our Whitelist and notified to proceed with the Sign Up process, which she performed successfully. |
<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/06/2016</td>
<td>Forgotten password&lt;br&gt;A user was not able to sign in because he had forgotten his password</td>
<td>A new password was generated and sent to the user. Further, the user was reminded that she could reset her password from the DAIAD mobile app itself.</td>
</tr>
<tr>
<td>10/06/2016</td>
<td>Pilot drop-out&lt;br&gt;A user who had unsuccessfully tried to pair the device decided to leave the pilot</td>
<td>The user was contacted in order to explore the reasons for the technical difficulties she encountered. Unfortunately, the user did not respond and requested to be removed from the Trial. The equipment was returned and allocated to another participant within 3 weeks.</td>
</tr>
<tr>
<td>11/06/2016</td>
<td>Learning mode.&lt;br&gt;A user contacted us telling that the app seems to be ‘locked’ because the Learning mode remained active.</td>
<td>We reminded the user about the purpose and duration of the Learning mode, advising her to be a bit more patient.</td>
</tr>
<tr>
<td>14/06/2016</td>
<td>Pairing second b1&lt;br&gt;A user contacted us by email reporting that her mobile device cannot be paired with the second amphiro b1 in the household.</td>
<td>After evaluating the system’s logs, we discovered that the user had not installed the second b1 device during the initial setup, with the DAIAD app having entered its Learning mode. We informed the user that she will be able to pair the second amphiro b1 when the ‘Normal mode’ will be enabled. The showers will be stored in the device’s internal memory, so no further action is required.</td>
</tr>
<tr>
<td>15/06/2016</td>
<td>Learning mode.&lt;br&gt;A user contacted us telling that her app was ‘locked’, and both amphiro devices’ displays were blank</td>
<td>We reminded the user about the purpose and duration of the Learning mode, confirming that this is the intended operation of the DAIAD system in the Learning mode, and advised her to be a bit more patient.</td>
</tr>
<tr>
<td>15/06/2016</td>
<td>Learning mode.&lt;br&gt;A user contacted us complaining that the app seems to be locked because the learning mode had not been changed to normal mode.</td>
<td>We reminded the user about the purpose and duration of the Learning mode, confirming that this is the intended operation of the DAIAD system in the Learning mode, and advised her to be a bit more patient.</td>
</tr>
<tr>
<td>26/06/2016</td>
<td>Learning mode.&lt;br&gt;A user contacted us telling that she didn’t know how to use the app. Additionally, her 3 b1</td>
<td>We reminded the user about the purpose and duration of the Learning mode, confirming that this is the intended operation of the DAIAD system in the Learning mode, and advised her to be a bit more patient.</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td>Details</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>27/06/2016</td>
<td>Amphiro b1 pairing</td>
<td>The user was invited to visit Aguas de Alicante, where Consortium members demonstrated the pairing process using our demo b1 devices. Following this demonstration, the user successfully paired her amphiro b1 device.</td>
</tr>
<tr>
<td>27/06/2016</td>
<td>Pairing second b1</td>
<td>After evaluating the system’s logs, we discovered that the user had not installed the second b1 device during the initial setup, with the DAIAD app having entered its Learning mode. We informed the user that she will be able to pair the second amphiro b1 when the ‘Normal mode’ will be enabled. The showers will be stored in the device’s internal memory, so no further action is required.</td>
</tr>
<tr>
<td>28/06/2016</td>
<td>Learning mode</td>
<td>We reminded the user about the purpose and duration of the Learning mode, confirming that this is the intended operation of the DAIAD system in the Learning mode, and advised her to be a bit more patient.</td>
</tr>
<tr>
<td>30/06/2016</td>
<td>Malfunctioning b1</td>
<td>After evaluating the system’s logs and all other possible sources of error, the b1 unit was found to be defective and was replaced. The user successfully installed and started using the new b1, while the malfunctioning b1 was delivered to Amphiro for examination.</td>
</tr>
<tr>
<td>30/06/2016</td>
<td>Amphiro b1 LCD remained inactive</td>
<td>The user was instructed to use the inactive b1 as normal, explaining her that her data are safely stored in the device. In parallel, we examined the system’s logs and successfully reproduced the problem using the same mobile device (type/OS) of the user. A new version of the DAIAD mobile app addressing this bug was immediately published. The user confirmed that after updating the mobile app, the b1’s LCD was successfully activated.</td>
</tr>
<tr>
<td>Date</td>
<td>Issue</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>01/07/16</td>
<td>Unsupported Android device</td>
<td>A user contacted us by email reporting a problem connecting the amphiro b1 with her mobile device.</td>
</tr>
<tr>
<td>01/07/16</td>
<td>Pairing b1</td>
<td>A user contacted us by email and reported that she could not pair her mobile device with amphiro b1.</td>
</tr>
<tr>
<td>04/07/16</td>
<td>Account problem</td>
<td>After attempting to pair the devices without finishing the process, a user deleted and reinstalled the app. Her account was not recognized as valid when he introduced it for the second time.</td>
</tr>
<tr>
<td>05/07/16</td>
<td>Pairing b1</td>
<td>A user contacted us by email and reported that she could not pair her mobile device with amphiro b1.</td>
</tr>
<tr>
<td>06/07/16</td>
<td>Pairing second b1</td>
<td>A user contacted us by email reporting that her mobile device cannot be paired with the second amphiro b1 in the household.</td>
</tr>
<tr>
<td>08/07/16</td>
<td>Unsupported Android version</td>
<td>A user informed us that she could not sign in the DAIAD app</td>
</tr>
<tr>
<td>Date</td>
<td>Issue</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>11/07/2016</td>
<td>Unsupported device</td>
<td>A user contacted us by email reporting a problem connecting the amphiro b1 with her mobile device. We verified that the user was attempting to use an unsupported mobile device. Following our communication, the user selected a compatible device, experiencing no problems.</td>
</tr>
<tr>
<td>12/07/2016</td>
<td>Amphiro b1 LCD remained inactive</td>
<td>A user complained because only one of her b1 devices was activated in Phase 2. The user was instructed to use the inactive b1 as normal, explaining her that her data are safely stored in the device. In parallel, we examined the system’s logs and successfully reproduced the problem using the same mobile device (type/OS) of the user. A new version of the DAIAD mobile app addressing this bug was immediately published. The user confirmed that after updating the mobile app, the b1’s LCD was successfully activated.</td>
</tr>
<tr>
<td>12/07/2016</td>
<td>Malfunctioning b1</td>
<td>A user expressed her irritation due problems with her b1 device. She claimed that in her attempt to identify the causes, she had repeatedly spent too much water. The b1 was retrieved and examined, confirming a malfunction of the b1’s Bluetooth module. The device was replaced, addressing all issues the user encountered.</td>
</tr>
<tr>
<td>12/07/2016</td>
<td>Malfunctioning b1</td>
<td>A user complained because only one of her b1 devices was activated in Phase 2. A technician visited the premises of the user to test the system. One of the devices’ Bluetooth was found to be malfunctioning and it was replaced accordingly.</td>
</tr>
<tr>
<td>13/07/2016</td>
<td>Amphiro b1 LCD remained inactive</td>
<td>A user complained because only one of her b1 devices was activated in Phase 2. The user was instructed to use the inactive b1 as normal, explaining her that her data are safely stored in the device. In parallel, we examined the system’s logs and successfully reproduced the problem using the same mobile device (type/OS) of the user. A new version of the DAIAD mobile app addressing this bug was immediately published. The user confirmed that after updating the mobile app, the b1’s LCD was successfully activated.</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td>Resolution</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| 14/07/2016 | • Unsupported mobile device  
  A user informed us that nothing appears in the historic record of showers in the mobile app, even though real time information of shower events is displayed. | We confirmed that the historic record of the user’s showers is correctly registered in the monitoring environment. After consulting the system’s logs, we informed the user that the issue was caused by an unsupported mobile device (tablet), advising her to use the compatible mobile device she already has available. |
| 14/07/2016 | • Malfunctioning b1.  
  A user informed us that only one of her b1 devices was activated in Phase 2.                                                                 | A technician visited the premises of the user to test the system. One of the devices’ Bluetooth was found to be malfunctioning and it was replaced accordingly.                                           |
| 14/07/2016 | • Malfunctioning b1  
  A user informed us that only one of her b1 devices was activated in Phase 2.                                                                      | The b1 was retrieved and examined, confirming a malfunction of the b1’s Bluetooth module. The device was replaced, addressing all issues the user encountered.                                         |
| 14/07/2016 | • DAIAD functionality  
  A user wrote us when the app became active (moved in Phase 2) telling that everything was OK and that she was really delighted with the pilot. | We thanked the user for her communication and support.                                                                                                                                                      |
| 14/07/2016 | • Malfunctioning b1  
  A user informed us that she was not able to pair the second device even though the bear appeared and every data was shown in the screen. | The b1 was retrieved and examined, confirming a malfunction of the b1’s Bluetooth module. The device was replaced, addressing all issues the user encountered.                                             |
| 15/07/2016 | • Missing historical showers  
  A user contacted us complaining for missing time-series information for a number of her showers.                                                   | We reminded the user the way shower data are transmitted from the b1 and displayed in the app, advising her to keep her mobile device near the shower at all times, in order to collect full real-time data for her shower events. |
| 18/07/2016 | • Malfunctioning b1  
  A user informed us that only one of her b1 devices was activated in Phase 2.                                                                      | The b1 was retrieved and examined, confirming a malfunction of the b1’s Bluetooth module. The device was replaced, addressing all issues the user encountered.                                         |
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/07/2016</td>
<td>LCD remained inactive</td>
<td>We reminded the user the purpose of the study, advising her to be a bit patient, and informing her that she will have full access to the DAIAD system within a few weeks.</td>
</tr>
<tr>
<td>25/07/2016</td>
<td>Pairing second b1</td>
<td>After evaluating the system’s logs, we discovered that the user had not installed the second b1 device during the initial setup, with the DAIAD app having entered its Learning mode. We informed the user that she will be able to pair the second amphiro b1 when the ‘Normal mode’ will be enabled. After moving the user to Phase 2, she reported that she had trouble pairing the b1. We visited the user’s premises and successfully paired the device.</td>
</tr>
<tr>
<td>01/08/2016</td>
<td>Pairing second b1</td>
<td>After evaluating the system’s logs, we discovered that the user had not installed the second b1 device during the initial setup, with the DAIAD app having entered its Learning mode. We informed the user that she will be able to pair the second amphiro b1 when the ‘Normal mode’ will be enabled. After moving the user to Phase 2, she reported that she had trouble pairing the b1. We visited the user’s premises and successfully paired the device.</td>
</tr>
<tr>
<td>04/08/2016</td>
<td>Malfunctioning b1</td>
<td>The b1 was retrieved and examined, confirming a malfunction of the b1’s Bluetooth module. The device was replaced, addressing all issues the user encountered.</td>
</tr>
<tr>
<td>05/08/2016</td>
<td>Installation problem</td>
<td>After an email exchange with the user, the source of the problem could not be identified, and a technician was dispatched to the user’s premises, where it was discovered that the user had installed the device in the opposite position and consequently, the b1 couldn’t work. After correctly installing the b1, the problems were solved.</td>
</tr>
<tr>
<td>11/08/2016</td>
<td>Sign in problem</td>
<td>We contacted the user the following day but the problem was already addressed by the user, as it was only a typing error when entering her credential’s in the app.</td>
</tr>
<tr>
<td>ID</td>
<td>60</td>
<td>61</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>28/08/2016</td>
<td>31/08/2016</td>
</tr>
<tr>
<td></td>
<td>us that her spouse could not sign in using his account.</td>
<td>• General complaints A user wrote us complaining that he preferred the standalone b1 (i.e. not linked to the app) instead of using the mobile app.</td>
</tr>
<tr>
<td></td>
<td>We reminded the user the purpose of examining and evaluating different types of interventions (in this case real-time vs. analytical), while also thanking her for the remarks and comments. The user was really comprehensive, understanding the purpose of the study.</td>
<td>• DAIAD App connectivity A user informed us that app shows a message telling there is no data connection available, even though GPRS data connection is turned on.</td>
</tr>
<tr>
<td></td>
<td>After examining the system’s logs, we managed to reproduce the problem, and correct it at the next version of the mobile app.</td>
<td></td>
</tr>
</tbody>
</table>

### 3.3.4. Risks

We anticipate the following risks for the next period of the Trial.

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk</th>
<th>Contingency Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Malfunctioning b1 devices</td>
<td>The risk is small, as currently more than 96% of the distributed devices operate trouble-free. We will be monitoring the pilot for any technical issues, replace the devices when needed, and study them to identify any systematic technical problems.</td>
</tr>
<tr>
<td>4</td>
<td>Unsupported mobile devices</td>
<td>The risk is small, with less than 5% of the participants having problems due to the specific type/version of their mobile device. These cases have been narrowed down to low-cost Android mobile devices, which do not fully confront to OS and/or BT stack specifications. We have taken extra care to test the mobile app against such devices, and even extending the app to support them despite their proprietary nature.</td>
</tr>
</tbody>
</table>
3.4. Quarter 3

3.4.1. Period summary

During this period, our efforts were focused on providing technical support to participants, collecting their feedback, and maintaining active communication with the system’s administrators in order to rapidly identify and address all issues encountered by users.

Overall, the number of issues and support inquiries had been much smaller than the previous period, as expected, with users progressing to the next planned Phases of the Trial with minimal problems. We opted to proactively communicate with users when moving to a new Phase, confirming the system was operating as intended. A satisfaction survey was distributed to Trial participants (see Annex 6 — Satisfaction survey), which will be repeated during the next final period, with their results presented in the Deliverable D7.3 ‘Trial Evaluation’.

In terms of technical issues, their majority concerned an incompatibility of a new app version which resulted into the app simply presenting a blank screen. The problem affected a specific type/version of Android mobile devices (<4 used in the pilot) due to a non-standard API implementation. A bug-fix was developed and a new version of the app was uploaded, resolving the issue. Further, in this period we only discovered only one malfunctioning b1, confirming our estimates for the low risk of these issues. Finally, two users left the pilot; the first due to a change of address (no SWM was available at her new residence) and the second due to difficulties in using the b1 in the shower (family members complained about the weight/size of the device).

The most critical issue discovered during this period did not affect the Trial, but the collection of SWM data to enable the subsequent analysis and evaluation of the Trial. Specifically, in the context of T7.5 ‘Evaluation’, the Consortium had already begun the analysis of the participant’s SWM time-series in terms of periodicity, seasonality, correlation with demographic characteristics, etc. From this analysis, we discovered a number of irregularities in the data, which upon a closer inspection were attributed to missing data points from the SWM data extracted from AMAEM’s smart metering system. In general, these type of quality issues were expected (e.g., data transmission problems, dirty reads) and actually gracefully managed by the system and our analysis algorithms to ensure the robustness of the system. However, the statistical analysis of these specific problems identified them as systematic in nature, rather than random. Upon a further round of analysis, and after AMAEM’s intense efforts, the problem was identified as a malfunctioning data processing script within AMAEM’s smart metering system. The problem was resolved by AMAEM, and all missing data points were successfully retrieved. While the Trial’s implementation was not affected in any way, this issue resulted into the delay of T7.5, as all data pre-processing, data cleaning, statistical analysis and evaluations needed to be reinitialized and performed from the very beginning. This experience was nevertheless beneficial as it confirmed two important aspects related to the application of SWM data for Big Data and ML-based analytics. First, smart metering infrastructures have been designed and operate to efficiently support billing, rather than complex household-level analytics. The corresponding compromises in data quality (necessary to reduce TCO of smart metering) are quite often not even known to water utilities, as data quality issues can only be discovered when applying the SWM data for complex analytics. Second, any system applying SWM data to extract complex analytics (e.g., demand management, consumer engagement) must by-design assume that input data will be of low quality,
inherently accommodate across all of its aspects the low veracity of data, and be extremely robust to changes in data quality.

Finally, the end of Q3 finds the Trial delayed by 1 month compared to our original schedule. Consequently, the overall picture regarding the progress of the Trial in the course of this period remains positive, and we expect it to be successfully completed within the next period.

3.4.2. KPIs

In this section we provide the evolution of select KPIs presenting the progress of the Trial A in Q3, highlighting specific periods and/or events of particular interest.

3.4.2.1. Participants per Phase

During this period, all participants gradually obtained full access to the DAIAD system (Phase 3), at which point they gained access to the hidden interventions of Phase 2. This marked an important milestone for the Trial, as participants were exposed both to diagnostic and real-time interventions, and for the first time received a complete impression of the normal operation of the system. As the period progressed, our participants moved to Phase 4, during which only half of them were exposed to social-based comparisons.
3.4.2.2. Water Consumption (SWM)

![Figure 29: Total daily consumption for Q3 (liters)](image)

The total daily consumption of our Panel for Q3 is normal, with consumption patterns accurately reflecting the periodicity (working days, week-ends) of water use. The sharp reduction of water use observed in days 40-41 were caused by a malfunction in the automated SWM data transmission from AMAEM’s smart metering infrastructure (this data was successfully retrieved asynchronously at a later date).

3.4.2.3. Water Consumption (shower)

![Figure 30: Total daily shower consumption for Q3 (liters)](image)

The daily volume of transmitted showers from our Trial participants remained stable and practically the same with the previous period, with two visible peaks around days 2-3 and 16-18, during which the system was not available due to scheduled maintenance. This increased the number of showers received in the following
days, as the mobile app manages potential server down-time and re-transmits any failed packets, thus ensuring no data loss. Finally, the time-series accurately reflects the periodicity (working days, week-ends, public holidays) of shower use, with patterns its visible throughout the period.

### 3.4.2.4. Shower events

![Figure 31: Shower events (total, real-time, historical) for Q3](image)

During this period, we captured in total 2,915 shower events, of which 1,070 are real-time shower events and 1,845 historical shower events. As we can observe, the number of historical showers increased following the days of system down-time, as explained in the previous section. In addition, throughout the course of the period we observed that the number of real-time shower events decreased in half, probably due to the participants losing their early momentum and fully integrating the system in their every-day lives. This is a highlight for the Trial, as it unofficially marks a period beyond which we can safely observe the sustained effect of the system. However, it also necessitates a further improvement in the throughput of the data transmission for historical showers (at least 100%) to ensure that more historical showers are transmitted in the fewer opportunities available (i.e., the real-time events), and thus all shower data eventually reach the server.

### 3.4.2.5. Amphiro b1 malfunctions

During this period, one (1) out of 184 deployed b1 devices were reported as malfunctioning and replaced accordingly. Since the beginning of the Trial, the total number of malfunctioning b1 devices is eight (8), i.e., 4.3%.
3.4.2.6. System availability (uptime)

![Graph showing daily system availability (in % of time within a day the system was available)](image)

*Figure 32: Daily system availability (% of time within a day the system was available)*

All interruptions in the system's availability during Q3 were scheduled down-times (maintenance/upgrades).

3.4.3. Issues

The following table presents the issues we addressed during Q3 of Trial A, and the corrective steps we took in order to explore, analyze, and address them.

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Problem Description</th>
<th>Corrective Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>01/09/2016</td>
<td>• Pilot drop-out&lt;br&gt;A user informed us that her family found the amphiro made showers uncomfortable due to its weight and size, and as such, she decided to leave the pilot</td>
<td>We thanked the user for her patience and retrieved the devices.</td>
</tr>
<tr>
<td>63</td>
<td>01/09/2016</td>
<td>• Installation problem&lt;br&gt;A user informed us that even though she had received an email telling her she entered normal mode, the display of the b1 remained blank.</td>
<td>After communicating with the user, a technician was dispatched to the user's premises, where it was discovered that the user had installed the device in the opposite position and consequently, the b1 did not work properly. After correctly installing the b1, the problems were solved.</td>
</tr>
<tr>
<td>64</td>
<td>02/09/2016</td>
<td>• Malfunctioning b1</td>
<td>After analyzing the system’s logs, we advised the user to perform a number of small tests, which</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>07/09/2016</td>
<td>New mobile device</td>
<td>A user informed us that she purchased a new mobile device and wished to install the mobile app and repeat the pairing process. We remind the user the installation steps, and instructed her to bring her new mobile device within working range of the b1 Bluetooth for her first showers in order to retrieve her historical shower events from the internal b1 memory.</td>
<td></td>
</tr>
<tr>
<td>08/09/2016</td>
<td>Forgotten password</td>
<td>A user was not able to sign in because her sibling had deleted the app and she did not remember the password. She later contacted us again because the password provided to her didn’t work. A new password was generated and sent to the user. Further, the user was reminded that she could reset her password from the DAIAD mobile app itself. In the following, the user informed us she had trouble signing in the app, but this was caused by the user mistyping the password.</td>
<td></td>
</tr>
<tr>
<td>29/09/2016</td>
<td>Sign in problem</td>
<td>A user who had been on holidays notified us she tried to sign in and the app notified him that his user was wrong. The user had pressed Sign Up, instead of Sign In. After correctly selecting sign in, she experienced no problems.</td>
<td></td>
</tr>
<tr>
<td>07/10/2016</td>
<td>Blank screen</td>
<td>A user informed us that after updating the app to its latest version, when the app opens it only presents a static white screen. After analyzing the system’s logs and the changes introduced in the mobile app updated, we reproduced the problem. The white screen is presented on a specific type/version of Android mobile devices (&lt;4 used in the pilot) due to a non-standard API implementation. We developed a bug-fix and uploaded a new version of the app within a few days, which solved this problem.</td>
<td></td>
</tr>
<tr>
<td>09/10/2016</td>
<td>Blank screen</td>
<td>A user informed us that after updating the app to its latest version, when the app opens it only presents a static white screen. After analyzing the system’s logs and the changes introduced in the mobile app updated, we reproduced the problem. The white screen is presented on a specific type/version of Android mobile devices (&lt;4 used in the pilot) due to a non-standard API implementation. We developed a bug-fix and uploaded a new version of the app within a few days, which solved this problem.</td>
<td></td>
</tr>
</tbody>
</table>
3.4.4. Risks

We anticipate the following risks for the next period of the Trial.

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk</th>
<th>Contingency Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Malfunctioning b1 devices</td>
<td>The risk is small, as currently more than 96% of the distributed devices operate trouble-free. We will be monitoring the pilot for any technical issues, replace the devices when needed, and study them to identify any systematic technical problems.</td>
</tr>
<tr>
<td>5</td>
<td>Unsupported mobile devices</td>
<td>The risk is small, with less than 5% of the participants having problems due to the specific type/version of their mobile device. These cases have been narrowed down to low-cost Android mobile devices, which do not fully confront to OS and/or BT stack specifications. We have taken extra care to test the mobile app against such devices, and even extending the app to support them despite their proprietary nature.</td>
</tr>
</tbody>
</table>

3.5. Quarter 4

3.5.1. Period summary
This period marked the successful end of the Trial and the availability of its results to the entire Consortium for analysis and evaluation in the context of T7.5. We received very few support requests from our Panel, signaling both the increased technical maturity of the app, as well as their increased familiarity with its use.

Overall, our efforts have been focused on maximizing the data generated from the Trial, ensuring excellent coverage and quality. Towards this, we have taken the following measures:

- **Historical b1 data.** We introduced a new harvesting scheme for our opportunistic data transmission protocol from the b1, placing emphasis on retrieving all historical data stored within the device that were not transmitted during past real-time events. This change was rolled-out in an app update and allowed us to massively collect all shower events performed by our Panel, thus completing our knowledge concerning shower usage for all participants during the Trial.

- **1min SWM data.** To facilitate the analysis and evaluation of disaggregation and personalization algorithms, we deployed in two (2) households additional in-line SWMs monitoring consumption every 1 min. This highly granular data is retrieved by the DAIAD system (system supports 1s-1-month readings), thus validating its flexibility, and forwarded for further analysis and evaluation in the context of WP4.

- **Coherent data export.** A new facility was integrated in DAIAD, allowing all Consortium members to retrieve the data produced during the Trial in a uniform manner. Users can download the original data (SWM, b1, phases, users), the cleaned data (applying common rules for data cleaning and sanitization), as well as auxiliary data (SWM data for 1K external consumers to be used for comparison).

- **Pricing and Post-experimental surveys.** Two new surveys were prepared and sent to AMAEM customers. The first was prepared in the context of T7.4, exploring different pricing points for the system, while the latter was sent to all Trial A participants in order to assess their final impressions from the system. The results of both surveys will be analyzed and presented in D7.3.

- **Evaluate production roll-out.** The experimental protocol of the Trial allowed us to evaluate multiple interventions, but did not provide us with an opportunity for assessing the production roll-out of the DAIAD system. Specifically, in a real-world setting, the system will start directly with its full functionality available (i.e., in Phase 5), since the interim phases are only relevant for our experimental study. Towards this, we decided to extend the Trial to additional 30 users located outside Alicante, thus approaching users not already familiar with DAIAD. AMAEM, with the cooperation of the city council of Sant Joan d’Alacant, recruited 20 households in Sant Joan, which gained full access to the DAIAD system (SWM/b1). This activity was supported by the “Green Houses” initiative, a scheme promoted by the MAGRAMA (Spanish Ministry of Agriculture, Food and Environment), which is also associated with the European “Green in everyday life” project (http://www.green4life.world/). In this manner, we also exploited local synergies, further increasing DAIAD’s visibility and reach.

- **Evaluate retention.** Following the official end of our Trial, we decided to maintain the operation of the DAIAD system till the end of the project, allowing our users to continue using the system, and allowing us to monitor the retention of the achieved changes in their consumption behavior. In this period, we will not provide any support to consumers, and only continue the monitoring and analysis of their behavior, which we consider as an important aspect for our work in T7.5.
3.5.2. KPIs

In this section we provide the evolution of select KPIs presenting the progress of the Trial A in Q 4, highlighting specific periods and/or events of particular interest.

3.5.2.1. Participants per Phase

During this period, all participants were successfully moved to Phase 5, at which point the complete functionality of the system became available to all users with no exceptions.

3.5.2.2. Water Consumption (SWM)

During this period, all participants were successfully moved to Phase 5, at which point the complete functionality of the system became available to all users with no exceptions.
The total daily consumption of our Panel for Q4 is normal, with consumption patterns accurately reflecting the periodicity (working days, week-ends, public holidays) of water use. The close to zero water consumption observed in days 51-61 were caused by a malfunction in the automated SWM data transmission from AMAEM’s smart metering infrastructure (this data was successfully retrieved asynchronously at a later date).

3.5.2.3. Water Consumption (shower)

![Figure 35: Total daily shower consumption for Q4 (liters)](image)

The daily volume of transmitted showers from our Trial participants remained stable and practically the same with the previous period, with a number of visible peaks around days 20-31, during which a new app update tripled the throughput for receiving historical showers (hence a high number of historical showers were retrieved these days). This improvement was planned during the previous period (see 3.4.2.3) and ensured that all shower events captured and stored in the b1 were successfully transmitted to the server. Finally, the time-series accurately reflects the periodicity (working days, week-ends, public holidays) of shower use, with patterns its visible throughout the period.
3.5.2.4. Shower events

During this period, we captured in total 3,381 shower events, of which 757 are real-time shower events and 2,627 historical shower events. As we can observe, the number of historical showers increased after the introduced mobile app update mentioned in the previous section, and is directly responsible for the increase in total shower events (real-time showers remained practically stable throughout the period).

For the entire duration of the Trial, we captured in total 10,758 shower events, of which 3,508 are real-time shower events and 7,250 historical shower events.

3.5.2.5. Amphiro b1 malfunctions

During this period, no b1 devices were reported as malfunctioning. For the entire duration of the Trial, the total number of malfunctioning b1 devices is eight (8), i.e., 4.3%.
3.5.2.6. System availability (uptime)

![Figure 37: Daily system availability (% of time within a day system was available)](image)

All interruptions in the system's availability during Q4 were scheduled down-times (maintenance/upgrades).

3.5.3. Issues

The following table presents the issues we addressed during Q4 of Trial A, and the corrective steps we took in order to explore, analyze, and address them.

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Problem Description</th>
<th>Corrective Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>01/12/2016</td>
<td>• Blank screen&lt;br&gt;A user informed us that after updating the app to its latest version, when the app opens it only presents a static white screen.</td>
<td>We advised the user to update the app to its latest version. The user confirmed the problem was solved.</td>
</tr>
<tr>
<td>73</td>
<td>17/12/2016</td>
<td>• Forgotten password&lt;br&gt;A user had purchased a new mobile and installed the mobile app, but did not remember her password.</td>
<td>We explained to the user how to reset the password herself using the integrated functionality of the mobile app.</td>
</tr>
<tr>
<td>74</td>
<td>02/01/2017</td>
<td>• Various bugs&lt;br&gt;A user informed us that since the latest app version: (a) her total water consumption appeared low, and (b) the current (i.e. in</td>
<td>We explained to the user that the total water use in presented in m3 rather than liters which she expected (measurement units are clear in the app). Regarding the second comment, this was an intentional behavior of the app for the last</td>
</tr>
<tr>
<td>75</td>
<td>real-time) water use in the shower is not visible</td>
<td>period of the Trial, aiming to extract all non-transmitted historical shower data stored in her b1 devices. Specifically, we explained to the user that due to the way Bluetooth operates, the current consumption is not presented, in order to save bandwidth and ensure all historical data are transmitted when the mobile phone is in close vicinity with the b1 device.</td>
<td></td>
</tr>
<tr>
<td>31/01/2017</td>
<td>• Use of a second mobile device</td>
<td>We informed the user that she could use any other compatible mobile devices available in the household, reminding her to always use the same user account.</td>
<td></td>
</tr>
<tr>
<td>A user contacted us wanting to know if it is possible to sign in the app with a second device.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Annex I — Survey for expression of interest

In this Annex we provide the Welcome screen of the web survey as well the complete list of questions and answers (exported via printing the form, styling omitted).

![Survey for expression of interest - Welcome screen](image-url)
5. Annex 2 — Trial Guides

5.1. Short guide

¡Hola Alicante! ¿quieres unirte a nosotros?
www.daiad.eu/join

¡Bienvenido a DAIA!
Introducción
Agua de Alicante se ha acercado en anunciar que nuestros clientes podrán participar en un piloto de 27 meses de las tecnologías de monitoreo de agua desarrolladas por DAIA, un proyecto de investigación de la UE.

DAIA ha creado una nueva herramienta que combina control y medición de la calidad del agua que utiliza, ayudando a tomar decisiones informadas y reducir el uso de agua mediante su toma de decisiones para mejorar el useo del agua. Este es un proyecto de investigación del Instituto Tecnológico de Alicante (ITI) y la Universidad de Alicante.

Agua de Alicante ha logrado asegurar que 100% de sus clientes pueden participar en el programa piloto de forma gratuita.

¿ Quiénes somos?
El proyecto DAIA
DAIA es un proyecto de investigación que aborda un aspecto importante para la sostenibilidad y el bienestar de nuestra sociedad. Nos proporciona herramientas que ayudan a mejorar y reducir el uso del agua.

¿Qué vamos a hacer en el piloto?
Vamos a mostrarles cómo utilizar el sistema

En realidad, es muy simple. Sólo tiene que instalar el sensor de agua intelectivo y la aplicación móvil, no es necesario contratarlo. No tendrá que hacer nada más que cambiar su conducta, a fin de gestionar el agua de manera eficiente.

- El sensor proporciona una información directa a los usuarios seleccionados para participar en el proyecto. Este puede ser en su hogar, en un local comercial o en un entorno industrial en los últimos meses de 2015.

- Se le invita a completar una encuesta que nos proporcionará información sobre su uso de agua. A través de esta encuesta de cuestionario se evaluará el consumo de agua.

- Después de estar en el sensor se informará al usuario del consumo de agua. Se le proporcionarán herramientas para realizar ese uso eficiente.

- La aplicación móvil dará las indicaciones necesarias para ayudar al usuario a mejorar su consumo de agua.

¿En qué consiste el piloto?
El sistema que vamos a probar

Todo el sistema se basa en una aplicación móvil (DAIA) que puede registrar y compartir los datos de consumo de agua que le proporciona al usuario.

- La aplicación móvil: se encarga de recibir información de los dispositivos de medición y proporcionar un resumen en tiempo real.

- Los datos de consumo se registran en el servicio web:

¿Es un candidato elegible?
El proyecto sólo se participará de 27 meses.

- El sistema es totalmente gratuito y gratuito.

¿Quieres unirte al piloto?
Y ya es mañana

¡Estamos realmente contentos de que nos hayas escrito!

Por favor, entra en el siguiente link y completa la encuesta para indicarles el número de personas interesadas.

www.daiad.eu/join

¡Gracias, Thank you, Gracias, Vielen Dank!
5.2. Long guide

¡Hola Alicante!
¿quieres unirte a nosotros?
www.daiad.eu/join

¿Cuánto sabes del agua?

Aquí te presentamos algunos hechos fascinantes sobre el agua:

- El agua cubre el 71% de la superficie terrestre.
- El agua pura es incolora y inodora.
- El agua es el líquido más capaz de absorber calor.
- El agua es la base de todos los seres vivos.

¿Cuánto sabes del agua?

¿En qué consiste el piloto?

El sistema DAIAD

El proyecto DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.

¿En qué consiste el piloto?

El sistema DAIAD

El sistema DAIAD utiliza los avances de la tecnología de sensores para monitorear el agua en tiempo real. Esto permite prever y gestionar mejor la demanda de agua, ahorrando recursos y reduciendo las pérdidas.
¿Eres un candidato elegible?

Resuelve los siguientes desafíos para ser candidato:

- Pregunta 1: ¿Cómo se genera el valor de la energía solar en una planta solar fotovoltaica?
- Pregunta 2: ¿Cómo se calcula el potencial de un proyecto de hidroenergía?
- Pregunta 3: ¿Cómo se determina la eficiencia de un panel solar?

¿Estamos realmente contentos de que nos ayudes!

Por favor, entrena en el siguiente link y completa la encuesta para indicarnos tu opinión. Serán siete minutos.

Te enviamos los mejores consejos de cómo hacerle sentir y participar en el piloto.

www.daiad.eu/join

¡Gracias! Thank you, RipeAupala! Vielen Dank!

DELIVERABLE 7.1

63
Preguntas Frecuentes
Para más información, contáctenos al 984 587 855 (servicio al cliente)  
www.6490.es  
www.6490.es  
www.6490.es

Preguntas Generales

¿Qué es el panel de Agua de Manzana en el proyecto? Agua de Manzana es un producto de la empresa Insubrise, un grupo de empresas que se dedican a la producción de agua de manzana. El panel se utiliza para mejorar la calidad del agua y reducir la cantidad de negativos para el medio ambiente.

¿Para qué se utiliza el panel de Agua de Manzana? El panel de Agua de Manzana se utiliza para mejorar la calidad del agua y reducir la cantidad de negativos para el medio ambiente.

¿Puedo utilizar el panel de Agua de Manzana en mi hogar? Sí, el panel de Agua de Manzana es adecuado para uso en el hogar. Sin embargo, se recomienda que se utilice en lugares con alta concentración de negativos para el medio ambiente.

¿Es necesario tener una ducha tipo walk-in? Esta es una pregunta específica y no está relacionada con los elementos presentados en el documento. Sin embargo, se menciona que se debe tener un dispositivo de seguridad para evitar el mal uso de la ducha.

¿Cómo funciona el panel de Agua de Manzana? El panel de Agua de Manzana funciona mediante la eliminación de negativos para el medio ambiente del agua.

Dispositivo móvil

¿Por qué no puedo descargar la app? La app puede no estar disponible en todas las versiones del sistema operativo.

¿El precio del panel de Agua de Manzana es accesible? La empresa no proporciona información sobre el precio del panel de Agua de Manzana.

¿Cómo funciona el panel de Agua de Manzana en el hogar? El panel de Agua de Manzana se utiliza para mejorar la calidad del agua en el hogar y reducir la cantidad de negativos para el medio ambiente.

¿Puedo descargar la app en mi teléfono móvil? Sí, la app está disponible en diferentes versiones para diferentes sistemas operativos.

¿Puedo utilizar el panel de Agua de Manzana en el trabajo? Si, el panel de Agua de Manzana es adecuado para uso en el trabajo.

¿Cómo funciona el panel de Agua de Manzana en el trabajo? El panel de Agua de Manzana funciona mediante la eliminación de negativos para el medio ambiente del agua.

¿Es necesario tener una ducha tipo walk-in en el trabajo? Sí, es recomendable tener una ducha tipo walk-in en el trabajo.

¿Cómo funciona el panel de Agua de Manzana en el coche? El panel de Agua de Manzana se utiliza para mejorar la calidad del agua en el coche y reducir la cantidad de negativos para el medio ambiente.

¿Puedo descargar la app en mi coche? Sí, la app está disponible en diferentes versiones para diferentes sistemas operativos.

¿Puedo utilizar el panel de Agua de Manzana en el coche? Sí, el panel de Agua de Manzana es adecuado para uso en el coche.

¿Cómo funciona el panel de Agua de Manzana en el coche? El panel de Agua de Manzana funciona mediante la eliminación de negativos para el medio ambiente del agua.

¿Es necesario tener una ducha tipo walk-in en el coche? Sí, es recomendable tener una ducha tipo walk-in en el coche.

¿Cómo funciona el panel de Agua de Manzana en el coche? El panel de Agua de Manzana funciona mediante la eliminación de negativos para el medio ambiente del agua.
In this Annex we provide the Welcome screen of the web survey as well the complete list of questions and answers (exported via printing the form, styling omitted).
### 27. ¿Cómo sienten los demás el dolor en el cuerpo?

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
<th>No sabe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 28. ¿Había algo claro en lo que se había descrito?*

*Si no está claro lo que se confunde en lo que se menciona.*

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
<th>No sabe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 29. Tú y la tecnología

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
<th>No sabe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 30. ¿Cómo sienten los demás al escuchar las siguientes afirmaciones?

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
<th>No sabe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 31. ¿Qué tipo de acciones se describen en las siguientes afirmaciones?

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
<th>No sabe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Formularios Google**

---

**DAIAD**

**DELIVERABLE 7.1**
7. Annex 4 — Installation instructions
8. Annex 5 — Mode management notifications

8.1. Phase 1 — Reminder

Hola DAIADista
¡Casi lo hemos conseguido!
Recuerda tener tu móvil o tablet cerca ¡siempre que te Duches!. Antes de ducharte recuerda abrir la app DAIAD y asegúrate de tener encendido el Wi-Fi y el Bluetooth. Tu móvil debe estar lo más cerca posible de la ducha (3-5 m) y en lugar seco.

¿Por qué es importante?
Muy bien, pues DAIAD está en “Modo Aprendizaje” y parece estar inactiva. ¡Pero no!, está funcionando y recogiendo tu uso típico de la ducha, lo que llamamos “Línea Base”. Esto permitirá entender cómo DAIAD influye tu consumo de agua a largo plazo.

¡Y la única forma de establecer esa “Línea Base” es recoger la información de tu dispositivo con el móvil!

Si ya estás haciendo esto, pronto terminará el “Modo Aprendizaje” y podrás empezar a usar DAIAD!. Si no lo haces así, el dispositivo necesitará permanecer mucho más tiempo en Modo de Aprendizaje.

Y recuerda, nos encantaría conocer tu experiencia, cuéntanosla a través de Twitter usando el hashtag #ProyectoDAIAD y mencionando a @AMAEM_Oficial y @Daiad_EU.

¡Hasta pronto!

Un cordial saludo,
El equipo DAIAD

8.2. Phase 2 (b1 ON/mobile OFF)

Muchas gracias por tu paciencia, ¡ahora puedes empezar a usar DAIAD!
DAIAD ha estado en “Modo Aprendizaje” desde que lo instalaste para ir recopilando información crucial sobre tus consumos habituales de agua. ¡Por eso tanto la aplicación del móvil como el amphiro b1 estaban inactivos!
Pues bien, ¡el periodo de aprendizaje se ha completado!
Ahora avanzamos hacia una nueva fase del piloto:

- Tu amphiro b1 se activará por sí solo, mostrando el caudal, la temperatura y la eficiencia de tu ducha.
- La aplicación del móvil permanecerá inactiva durante unas semanas más.

Sigue los siguientes pasos:

- La próxima vez que vayas a ducharte, recuerda coger tu móvil.
- Abre la aplicación de DAIAD y asegúrate de tener conectado el Bluetooth y el Wi-Fi.
- Deja el móvil cerca (3 a 5 metros) y ¡dúchate!
- Si todo funciona correctamente, después de unos minutos la pantalla del amphiro b1 se activará!

¡Esto es todo! De ahora en adelante podrás ducharte mientras conoces en tiempo real tu consumo de agua. Simplemente recuerda tener el móvil cerca cuando te duches siempre que sea posible (idealmente, en todas las ocasiones). Asegúrate de abrir la aplicación DAIAD con el Bluetooth y el Wi-Fi activados. La aplicación parecerá inactiva, pero sin embargo estará recogiendo los datos de la ducha en segundo plano.

Y recuerda, nos encantaría conocer tu experiencia, cuéntanosla a través de Twitter usando el hashtag #ProyectoDAIAD y mencionando a @AMAEM_Oficial y @Daiad_EU.

¡Muchas gracias por tu participación en este piloto y por colaborar en mejorar DAIAD! Si necesitas ayuda puedes contactarnos al email proyecto.daiad@aguasdealicante.es

¡Esperemos que disfrutes utilizando DAIAD!

Un cordial saludo,
El equipo DAIAD

8.3. Phase 2 (b1 OFF/mobile ON)

Muchas gracias por tu paciencia ¡Ahora puedes utilizar DAIAD!

DAIAD ha estado en “Modo Aprendizaje” desde que lo instalaste, recogiendo la información necesaria para establecer tus hábitos en la ducha. Por esta razón tanto la app como el dispositivo estuvieron inactivos.

Pues bien, ¡esta etapa se ha completado!

- Y pasamos a la siguiente fase:
- La app DAIAD se activará por sí sola, mostrándote información acerca de tu uso del agua.
- Tu Amphiro b1 (el dispositivo en la ducha) permanecerá inactivo durante un par de semanas.

Sólo sigue los siguientes pasos:

- La próxima vez que vayas a ducharte, recuerda coger tu móvil.
• Abre la aplicación de DAIAD y asegúrate de tener conectado el Bluetooth y el Wi-Fi.
• Deja el móvil cerca (3 a 5 metros) y ¡dúchate!

¡Esto es todo! A partir de ahora podrás visualizar tus duchas a través de la app DAIAD.

Descubrirás una serie de nuevas funcionalidades que podrás utilizar. ¡Explóralas y utiliza las! Nos gustaría darte unas instrucciones detalladas de uso, pero dejarte descubrir cómo funcionan ¡es parte del experimento! :)

Simplemente recuerda tener el móvil cerca cuando te duchas siempre que sea posible (idealmente, en todas las ocasiones). Asegúrate de abrir la aplicación DAIAD con el Bluetooth y el Wi-Fi activados. La aplicación parecerá inactiva, pero sin embargo estará recogiendo los datos de la ducha en segundo plano.

Y recuerda, nos encantaría conocer tu experiencia, cuéntanosla a través de Twitter usando el hashtag #ProyectoDAIAD y mencionando a @AMAEM_Oficial y @Daiad_EU.

¡Muchas gracias por tu participación en este piloto y por colaborar en mejorar DAIAD! Si necesitas ayuda puedes contactarnos al email proyecto.daiad@aguasdealicante.es

¡Esperemos que disfrutes utilizando DAIAD!

Un cordial saludo,
El equipo DAIAD

8.4. Phase 3

Estamos muy contentos de anunciarte que ahora tienes acceso completo al sistema DAIAD!

El amphiro b1 y la aplicación de móvil estarán ambos activados ¡Lo que te permite conocer tu uso del agua dónde y cuándo quieras!

Sólo sigue los siguientes pasos:
• La próxima vez que te duches ten tu móvil cerca.
• Abre la aplicación de DAIAD y asegúrate de tener conectado el Bluetooth y el WiFi.
• Deja el móvil cerca (3 a 5 metros) y ¡dúchate!

¡Eso es todo!

Simplemente recuerda tener el móvil cerca cuando te duchas, a ser posible, siempre que lo hagas. Asegúrate de tener encendidos el Bluetooth y el WiFi cuando enciendas la app, así siempre que te duches, se enviará la información a tu móvil.
Y recuerda, nos encantaría conocer tu experiencia, cuéntanosla a través de Twitter usando el hashtag #ProyectoDAIAD y mencionando a @AMAEM_Official y @Daiad_EU.
¡Pronto contactaremos contigo! Tenemos muchas novedades que te ayudarán a mejorar el uso del agua.
¡Esperemos que estés disfrutando usando DAIAD!

Un cordial saludo,
El equipo DAIAD
9. Annex 6 — Satisfaction survey

In this Annex we provide the complete list of questions and answers (exported via printing the form, styling omitted).
10. Annex 7: Annual evolution of KPIs

For completeness and to assist the reader, in the following sub-sections we have assembled the evolution of our KPIs in throughout the 12-month duration of the Trial.

10.1. Participants per Phase

![Graph showing distribution of participants per phase during Trial A](image)

**Figure 40: Distribution of participants per phase during Trial A**

10.2. Water Consumption (SWM)

![Graph showing total daily consumption for Trial A (liters)](image)

**Figure 41: Total daily consumption for Trial A (liters)**
10.3. Water Consumption (shower)

Figure 42: Total daily shower consumption for Trial A (liters)

10.4. Shower events

Figure 43: Shower events (total, real-time, historical) for Trial A
10.5. System availability (uptime)

Figure 44: Daily system availability for Trial A (% of time within a day system was available)