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Abstract—A plethora of machine learning algorithms have
been proposed for modelling time series data and handling
several sub-tasks, such as forecasting, pattern recognition,
event/anomaly detection and clustering. Most machine learning
algorithms applied on time series data assume that the true
underlying model, from which the time series is generated,
remains the same throughout the dataset. For cases where this
assumption does not hold, in order to model the time series,
there are methods that partition the time-series by identifying
change points (change point detection or segmentation methods)
and methods that integrate the process of identifying changes in
the model within the algorithm (e.g. State Space Models).

The effect that a change in the underlying model has to the
performance of the machine learning algorithm depends on the
properties of the time series, the properties of the change and
the algorithm. In this paper, we argue that the training of a
machine learning model on a time series can be favoured by
considering the changes in the underlying model with respect
to the generalization error of the machine learning model to
be trained. To this end, we propose an algorithm that, given
a machine learning model, scans the time series backwards and
identifies a proper point in time from which on to include samples
in the training set of the model. The criterion for the selection of
this optimal point is the minimization of the generalisation error
of the trained machine learning model.

The proposed method can be applied on top of different
machine learning algorithms. In this paper, we demonstrate
the effectiveness of our method by applying it with three
machine learning algorithms for time series forecasting: Support
Vector Regression, Elastic-net Regularized Linear Regression and
Neural Network. We compare our proposed method with three
baselines: a naive one that trains the machine learning model on
the whole available dataset and two change point detection based
baselines which identify the optimal point in time by applying
state of the art change point detection methods. Our method
outperforms all baselines in each experimental configuration, for
every one of the three assessed machine learning algorithms, by
achieving significantly higher forecasting precision.

I. INTRODUCTION

Time series data mining is an extensive field with applica-
tions ranging in several scientific areas, including medicine,
economics, astronomy, energy, water demand, etc. Several
problems related to these fields involve the batch or real-time
analysis of time series data produced by measurements of a
quantity in (usually) fixed time intervals. The analysis may aim
to identify the future values of the time series (forecasting),
to identify interesting patterns (pattern recognition), to group
together time series or parts of them with similar behaviour
(clustering), to detect changes/events/anomalies in a time
series that might indicate a specific real-world cause (event
detection). A large number of approaches and algorithms that

Algorithm 1: Obtain Activity Zones
Data: TimeSeries Ts
Result: ActivityZones Zones

1 Patterns = IdentifySignificantPatternsForEachDay(Ts)
2 N=IdentifyNumberOfPattersPerDay(Patterns)
3 Hours = CountPatternPeaksPerHourOfDay(Patterns)
4 Zones = ∅
5 for i from 1 to N do
6 Peak=SelectHourWithMaxPatterns(Hours)
7 Zone=FindZoneAboveThreshold(Hours,Peak)
8 AddNewZone(Zones,Zone)
9 RemoveZoneFromHours(Hours)

10 end

Algorithm 2: Train Model for Activity Zones Prediction
Data: TimeSeries Ts, ActivityZones Zones
Result: ModelForActivityZones Model

1 Thresh = FindThresholdsForActivity(Ts,Zones)
2 ActTs = ObtainActivityTimeSeries(Thresh,Ts)
3 Model = InitEmptyModel()
4 forall the ActivityZones Az ∈ Zones do
5 ActModel = TrainModelForActivity(ActTs,Az)
6 AddToModel(ActModel,Model)
7 end

have been proposed in the past cover the aforementioned time
series analysis tasks.

Further, it is often the case that auxiliary methods have to
be applied that increase the effectiveness of machine learning
algorithms. Indicatively, time series smoothing [17] is applied
to adjust oscillations of different magnitude through the time
series values; trend, cycle and seasonality removal approaches
[14] remove predictable, temporal changes of the time series so
that the analysis is performed on the remaining components;
methods such as dynamic time warping [18] are applied to

Algorithm 3: Forecast Water Consumption
Data: BaselineSvrForecast SvrPred, TimeSeries Ts,

ModelForActivityZones Model
Result: Prediction Pred

1 AzPred = ForecastActivityZones(Model,Ts)
2 Pred = ModifySvrPrediction(SvrPred,AzPred)
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Fig. 1. An example of a time series where the underlying model changes at
time 50

align time series so that potentially undesirable time shifts
between two time series are handled.

Algorithms used for time series modelling assume that the
time series is generated from an underlying model, which they
attempt to estimate. In cases where that underlying model
changes at some point in time (for example Figure 1), the
algorithm needs to identify the change and account for it.
There are several methods that handle that problem, either by
dividing the time series and training different models on its
parts or by utilizing more complex models that can incorporate
the change. Which of those two approaches is more suitable
depends on the specific characteristics of the problem. The
choice of a more complex model is suitable for cases where
the changes are smooth and predictable, while the segmen-
tation/change point detection approach is suitable for more
sharp and unpredictable changes in the underlying model. In
our analysis, we do not consider cycle, trend or seasonality
detection, since there are several orthogonal methods that
effectively handle such components of time series, when they
exist.

In this paper we propose an algorithm for identifying the
optimal point to partition the time series, in order to get the
most accurate estimation of the current state of the underlying
model. Our algorithm considers a training dataset of past time
series observations and a machine learning model that is to
be trained on the dataset. It starts from the current point
in time, tn and scans the time series backwards in order
to identify the first historical point, th where a change in
the underlying model is detected. The change is detected by
examining the variations in the error of the model, while
adding previous samples in the training set. If the change
is considered significant, the algorithm isolates the sub-time
series {th, ..., tn} and provides only this specific part as
training input for the machine learning model to be trained.

The novelty of our approach is that it selects the change
point that optimizes the generalisation performance of the
learned model, which it evaluates through the use of a val-
idation set. Our argument is that simply identifying a change
in the underlying model is not sufficient for increasing the
effectiveness of the learned model, that is trained on the
“changed” part of the time series. In order to optimize the
effectiveness, one has to take into account the effect that the

change has to the machine learning model.
For example, a complex model would require a large amount

of samples to be adequately trained. If we detect a change in
the time series, that could in fact influence the model, but its
effect is not very severe, it may not be beneficial to discard
all the observations prior to the change, until we have enough
samples to confidently estimate the new state of the time series.
A simpler model on the other hand, could be trained from a
smaller dataset. In this case it could be beneficial to discard the
samples prior to the change as soon as the change is detected.
The optimal choice depends on the magnitude of the change
in the underlying model and the complexity of the trained
model/algorithm. Our method accounts for the effect that each
change has to the learned model, by examining the model’s
generalisation error.

The paper is organized as follows. In Section II we review
the literature on methods that address changes in time series
models. In Section III we first provide an overview of our
method and then we formally define the problem and describe
our method in detail. In Section IV we demonstrate the
effectiveness of our method used on top of three machine
learning algorithms and compared to three baseline methods.
Finally, Section V concludes the paper.

II. RELATED WORK

The problem of time series modelling and forecasting has
been extensively studied and numerous different approaches
and models can be found in the literature. The state of the art
for time series forecasting includes ARIMA models, Exponen-
tial Smoothing, Artificial Neural Networks and Support Vector
Machines, among others [13], [14], [15], [12], [?]. In the case
of time series of water consumption on individual households,
which is the dataset we use in our study, evidence in the
literature suggests that Linear Models and Support Vector
Machine algorithms perform best [16].

The problem of change point detection has also received a
lot of attention [3]. There are two main approaches that appear
in the literature. In the statistical approach ([1], [2], [4], [7],
[8], [10]), a series of hypotheses related to model change are
evaluated, using some statistical test, in order to divide the time
series in separate parts. In this line of work [1] use the Mann-
Whitney test that detects differences in population means, to
identify points where the level of the time series shifts. [7]
extends this work to also capture changes in the variance of
the time series. The other approach addresses the issue of a
changing model as an optimization problem ( [5], [6], [9] ).
In [6] the authors present a framework where they divide the
time series by minimizing the residual error of models trained
on the resulting parts. Similarly, [9] define the change points
in the time series in order to minimize the residual error of
a linear model, while penalizing the frequent changes in the
model to avoid over-fitting.

The novelty of our approach is that it selects the change
point so that the resulting model has the lowest generalisation
error, for the current state of the time series. This is a desired
feature, particularly in cases where change points are detected
for the purpose of forecasting.
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III. OPTIMIZING MODEL TRAINING

The proposed algorithm optimizes the training process of
machine learning models, on time series where the underlying
model may change though time. Specifically, it identifies the
best point in time, from which on it is beneficial to include
samples in the training-set. In this section, we first provide the
overview of the method, by intuitively explaining it through
a running example. Next, we provide the formal problem
definition and a detailed analysis of our proposed algorithm.
Finally, we discuss the parameters of our method and the effect
we expect them to have on its effectiveness.

A. Method Overview

The time series shown in Figure 2 depicts daily measure-
ments of water consumption from a single household. In our
setting, we want to build a model that predicts the behaviour
of this time series, based on some features that are available
(the consumption of the previous day, the day of week etc.).
We also suppose we are at day 205, which means that we have
knowledge of days 1 − 205 (training set) but not 206 − 365,
and we want to predict the consumption for the next 15 days,
i.e. the interval 206− 220. The most simple approach would
be to select a proper machine learning algorithm and train it
on the entire training set to create a model that describes the
time series. We know, however, that changes may occur in
a household (e.g. vacations, changes in work schedule etc.).
Those changes influence water consumption, therefore the
patterns of water consumption may be different for different
periods in time, requiring, thus, different models to describe
the time series. So, if we have no external/explicit information
about changes in the household, how do we know if such
changes exist? Further, how do we train our model so that it
captures the patterns of the current state but it is not skewed
by patterns from previous periods, that correspond to different
consumption models?

Fig. 2. Time Series of daily water consumption. The dashed lines at 205,220
and 235 define the two intervals of prediction described in Section III .

To see into these issues, we begin from day 205 (current
time), and go backwards in time, iteratively including samples
into the (existing) training set. Each time we add a new point,
we consider a new training set, train a model on it and measure
the prediction error, for days 206− 220. In Figure 3, we can
see the prediction error for each of these iterations (where in
x-axis we vary the starting day of the training set and the end

day is fixed at day 205). We clearly see that the minimum error
does not appear when the entire dataset is used (i.e. x = 1);
instead it appears around x = 115. This implies that at around
day 115 a change may have occurred in the household that
affected the patterns of water consumption. So, in this case,
by reducing the training set, we achieve a better predicting
performance for the model.

In Figure 4 we can see the prediction error on the interval
221 − 235 for different starting days of the training set. We
observe that, if we select day 110, that minimizes the error on
the interval 205 − 220 (Fig. 3), we will also achieve a very
significant improvement in the prediction error for the interval
221 − 235. That means that the behaviour of the time series
in the interval 205 − 220 is very similar to the behaviour in
221− 235, in this case. So if we are at day 220 and want to
predict days 221− 235, we can use the error for the interval
221−235 to find a good start for the training set of our model.

Our algorithm, in order to find the best start for the training
set, iteratively adds one previous sample to the training set
and calculates the error on a validation set, that is selected
to be as recent as possible, and, thus, as close as possible to
the current state of the time series. The use of a validation
set is based on the assumption of temporal locality, which
essentially prescribes that the behaviour of the time series
in the near future will likely be similar to the behaviour
in the recent past, like we observed in the example above.
For example, if at some point in time an inhabitant of the
household leaves for a trip, since we have no information
regarding his return, the property of temporal locality suggests
that we should consider he will be absent, until we observe he
has returned. Temporal locality is a natural assumption for time
series and is necessary when the changes in the underlying
model can not be predicted. Through the use of a validation
set we evaluate the generalisation error of the model. Therefore
we can select the training set that results in the model with
the best forecasting performance.

Fig. 3. The sequence of errors (MAE) for different starts of the training set.
The value at x = i is the error of the model trained on samples from i to
205. The error is measured on the interval 206-220

B. Problem Formalization

We consider time series Y , for which we have measure-
ments up to the current time t: Y = {yi, 1 ≤ i ≤ t}, where i
is the index of time. For each yi we have a vector of associated
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Fig. 4. The sequence of errors (MAE) for different starts of the training set.
The value at x = i is the error of the model trained on samples from i to
220. The error is measured on the interval 221-235

features xi. In the water consumption example, y would be
the water consumption and x would be the variables we use
to model it (previous consumption, day of week etc.). From
xi and yi we form the tuple (xi, yi) that we denote (x, y)i.
Then, we have a set of observed tuples:

D = {(x, y)i, 1 ≤ i ≤ t} (1)

which is our training set. We assume that, at time t, the
variables follow a model

y = f(x;θ) + ε (2)

This means that y is a function of the features x and a
vector of parameters θ, plus random noise ε. For example if
the model is linear then f(x) = xTw+ ε. The function f and
the parameters θ define the model of y. Our goal is, from the
dataset (training set) D, to infer the values of θ. Because of
the noise ε, it is impossible to recover the true values of θ
from a finite dataset. Using a machine learning algorithm we
can obtain an approximation θ∗. For this approximation we
can either use the entire training set D or some subset of D.
We denote as θ∗j the approximation that the algorithm obtains
from the subset {(x, y)i, j ≤ i ≤ t} of D. We evaluate θ∗j by
a metric of its error. One common such metric is the Mean
Absolute Error which is defined as:

MAE = E[|y − f(x;θ∗)|] (3)

where E is the expectation of the absolute difference between
the predicted and the real value.

Given the training set D, we aim to learn the parameters θ
that define the best model for the time series, for the current
state (i.e. at time t). Formally, the problem is to find:

argmin
i

E|y − f(x;θ∗i )|] (4)

That is, we want to find the point in time from which on
we should include the samples in the training set so as to get
the optimal parameters, according to the used error metric.

C. Algorithm Description

Based on the formalization of Section III-B, our goal is to
make the optimal use of training set D, in order to produce
the most fitting model for the time series at time t.

As previously stated, we assume that the time series exhibits
the property of temporal locality. With respect to the model,
this means that the parameters θ may change through time
but they either change slowly or they retain their value for
some time. Based on this, we define the validation set Dv =
{(x, y)i, t − nv < i ≤ t) of size nv . That is, our validation
set, independent of it size nv ends at the current time t. Thus,
we expect the model that best fits the validation set to be very
close to the optimal model for time t (current state of the
time series). By estimating the error of the model on Dv we
approximate the generalisation error and assess the importance
of possible changes in the underlying model of the time series
to our learned model. The size nv of the validation set is a
parameter of the algorithm.

Further, we assume a minimum training set Dtrain min =
{(x, y)i, t − nv − nt < i ≤ t − nv), of size nt. At the first
phase, described in Algorithm 4, the algorithm sequentially
adds previous data points into the training set, re-trains the
model and obtains an error on the validation set. By the end
of that procedure, a sequence of error vectors E, with each
error vector ei corresponding to different training i of the
model, is available:

E = [e1, e2...et−nv−nt ] (5)

Each error vector ei has size nv , and contains the absolute
errors for each point in the validation set, for the specific
training i:

eij = |yt−nv+j − f(xt−nv+j |θ∗i )|, 1 ≤ j ≤ nv (6)

For convenience we also define a sequence with the Mean
Absolute Error for each i:

Eµ = [ē1, ē2...ēt−nv−nt ] (7)

ēi =
1

nv

nv∑
j=1

eij (8)

At the second phase, described in Algorithm 5, the sequence
of errors is examined for significant deviations in the error that
would suggest the location of the optimal point for the training
of the model.

Within the for loop in Algorithm 5 (lines 4-9) it is decided
whether a point in time denotes an important change in
the model. Next, we perform an analysis that explains their
functionality.

In a setting where the underlying model remains the same,
the errors within the sequence of errors Eµ, produced in
Algorithm 4, are, generally, expected to decrease as the index
of time approaches 1. This is expected because, as the sample
grows, a better estimation of θ is possible. On the same time,
several points or sub-sequences where the error increases as
we add more samples to the training set are also expected
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Algorithm 4: Obtain sequential errors
Data: dataset D, parameters nv, nt
Result: sequences of error E,Eµ

1 Dtrain = {(x, y)i, t− nt − nv < i ≤ t− nv}
Dval = {(x, y)i, t− nv < i ≤ t}

2 for i from t− nv − nt to 1 do
3 Dtrain ← Dtrain ∪ (x, y)i
4 θ∗i ← TrainModel(Dtrain)
5 ei ←MeanAbsoluteError(θ∗i , Dval)
6 end

Algorithm 5: Find optimal point
Data: sequence of errors E,Eµ, parameters w,α
Result: optimal point index

1 mine ← Eµ[1]
2 index← 1
3 for i from 1 to t− nt − nv − w + 1 do
4 Let j be the index of the median of the set

{Eµ[l], i ≤ l < i+ w}
5 dj = e1 − ej
6 if Student′s t Test(dj , α) and Eµ[j] < mine then
7 index← i
8 mine = Eµ[j]
9 end

10 end

to appear, due to the statistical nature of the procedure. In
order to obtain meaningful results, we need to distinguish
the fluctuations in the error that occurred randomly from the
significant fluctuations that would indicate a change in the
underlying behaviour of the time series.

We define vector di as:

di = e1 − ei (9)

where di measures the improvement in the error if we do not
include in the training set points prior to i, against including
the whole set of points in the training set. At each iteration of
Algorithm 5 we have two competing hypotheses.

Hypothesis 0: The values of di represent an insignificant
improvement and can be considered random (H0).

Hypothesis 1: The values of di represent a significant
improvement (H1).

If H1 is true at iteration i then θ∗i is considered better
approximation to θ than θ∗1 . Respectively, if H0 is true then
θ∗1 is considered a better approximation of θ, because it is an
estimation from a larger sample.

If we approximate the distribution of di with the normal
distribution, we can use the Student’s t-Test (Algorithm 5, line
6) to evaluate the hypotheses. First we calculate the sample
mean and the sample standard deviation of di:

d̄i =
1

nv

nv∑
j=1

dij (10)

sdi =

√√√√ 1

nv − 1

nv∑
j=1

(d̄i − dij)2 (11)

Then we calculate T statistic as:

Ti =
d̄i
sdi√
nv

(12)

where Ti corresponds to iteration i.
Under H0, the T statistic follows a Student’s t-distribution

with nv − 1 degrees of freedom. We define a level of signifi-
cance 0 ≤ α ≤ 1 (usually we set some small value, e.g. 0.05).
For α we can calculate, from the distribution of the T statistic,
some threshold value Tα such that:

p(T < Ta|H0) > 1− α (13)

Then for a calculated Ti, we can reject H0 if:

Ti > Ta (14)

Equation 13 means that, if H0 is true, then with high
probability T < Ta. If we observe Ti > Ta then most
likely H0 is false. That makes H1 true which, as we stated
previously, makes θ∗i a better approximation than θ∗1 .

Regardless of the chosen test of significance, there is always
at most α probability for the H1 hypothesis to be erroneously
accepted. If, however, we evaluate multiple hypotheses, the
probability that, at least one hypothesis H1 is erroneously
accepted, is generally greater than α. We denote as B the
event that at least one H1 hypothesis is erroneously accepted
and as Ai the event that Ti < Ta:

p(B) = 1− p(Ai ∩i |H0) =

1− p(A1|H0)p(A2|H0, A1)p(A3|H0, A1, A2)...
(15)

We see in (15) that the probability of Ai is conditioned on
Ai−k, 1 < k < i. Ai and Ai−1 depend on Ti and Ti−1 which
are calculated from θ∗i and θ∗i−1. θ∗i and θ∗i−1 are estimated
from training sets that differ only by one sample. Thus, we
can say that Ti and Ti−1 are dependent which means that
Ai, Ai−1 are also dependent. In order to set the appropriate
Tα, to limit the probability of error B to a desired level, we
need to know the joint distribution of Ai,∀i. Because of the
dependence, this joint distribution is difficult to calculate and
is different for each machine learning algorithm.

In practice there are two ways to handle this problem. The
one is to calculate the joint probability through Monte Carlo
simulations. This way we can get a reasonable approximation
but at great computational cost. The other way is to empirically
set some rule that, based on the above analysis and the
properties of the problem, would effectively identify the cases
of statistical significance from the random fluctuations. We
implement the empirical method that is described next.

Through the iterations of Algorithm 5, when the algorithm
moves past the optimal point that we are searching for, we
expect that the error will increase. Due to the property of
temporal locality and the dependence of subsequent errors
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discussed above, we expect that the increase will be persistent
for some interval. Because of the multiple hypotheses, the
probability that a point with significantly low error will appear
at random increases. However, the probability that the error
remains low, at random, for a continuous sequence of points
of length w, diminishes quickly as w increases. Thus, in
order to identify important deviations in the error, that would
suggest a change in the underlying model, we require that
the error remains low persistently for several neighbouring
points. To achieve this we scan the sequence of errors using a
sliding window of size w and select the median of this sliding
window (Algorithm 2, line 4) to perform the significance test
(Algorithm 2, line 6). This is a simple and elegant way to
ensure that the error consistently remains low, for

w

2
points

in the neighbourhood of the selected point.
For example, for the sequence of errors shown in Figure 4

and for w = 10, our algorithm selects the point at x = 138.
The error at this point is the the median of the errors for the
set of points from x = 137 to x = 147. As we can see,
by applying this criterion, we select a point that is part of a
subsequence of points with consistently low error. At x = 184
there is point that also presents a significant decrease in error
which, however, is not persistent and we consider it random.
The point at x = 184 would not be selected by our algorithm
because it is not the median of any subsequence.

D. Parameters of the Algorithm

There are four parameters that need to be set in the
algorithm: the size of the validation set nv , the size of the
minimum training set nt, the confidence level α and the size of
the window w. The tuning of these parameters depends on the
qualities of the specific problem. Below we will qualitatively
describe their effect on the performance of the algorithm.

Parameter nv controls how confident we can be about the
value of the error ēi. A larger nv limits the effect of the
random variance of the validation error and provides a better
approximation to the true generalisation error. This allows
smaller shifts of the error to be identified as significant at
the given level of confidence α. This can be derived from the
equations of the t-Test but is also fairly intuitive. On the other
hand with a larger nv the algorithm requires more time to
acquire the necessary samples, so the it would have slower
response to changes in the time series.

Parameter α controls the level of confidence required in
order to identify a change as significant. The probability that
a single hypothesis of Algorithm 5 is erroneously accepted is,
in the worst case, equal to α. Therefore a lower α limits the
probability of error. The downside of using a very small α is
that it decreases the sensitivity of the algorithm to shifts in
the error. With a lower alpha only larger shifts in the error are
considered as significant.

Parameter nt controls the size of the initial training set
for the algorithm. Each algorithm requires a minimum set of
points in order to provide confident predictions. So, depending
on the algorithm, we should set nt large enough, so that the
variance of the error in the initial iterations of Algorithm 4
remains at an acceptable level.

Parameter w is used in Algorithm 5 in order to compensate
for the multiple hypotheses problem. Larger w makes the
algorithm less sensitive to shifts in the level of the error. The
value of w is dependent on the length of time series Y so
longer Y would require larger w. To our experience the results
are not very sensitive to changes in w so a proper value can
be identified after a few tuning trials.

E. Alternative Significance Test

By experimenting on the water consumption dataset we
have found that the normality assumption for the error is
often violated by the existence of outliers. This hinders the
performance of the t-Test used for significance testing in our
algorithm. Also, except for the statistical significance, it may
be beneficial to include the magnitude of the error change in
the change point selection process. To this end we propose an
empirical method to assess the significance of a change in the
error. We consider change at time i significant if:

Eµ[1]− Eµ[i]

Eµ[i]
> αthresh (16)

where αthresh is a parameter that controls the sensitivity of
the algorithm to changes in the error, similar to α. This test
replaces the Student’s t-Test in Algorithm 5 line 6. All other
parts of the analysis and the algorithm remain the same.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate the effectiveness of the pro-
posed method, on optimizing the training of machine learning
models on time series. As we have previously argued, the
proposed method can be applied on top of different machine
learning algorithms. To demonstrate this, we apply it on three
algorithms used for time series forecasting: Support Vector
Regression, Elastic-net Regularized Linear Regression and
Neural Network. In our setting, each of these algorithms is
trained on a part of dataset D and aims at predicting the next
time series values. In our experiments, we compare the training
performed using our method against three baselines: the naive
method of training on the whole available training set and two
change point detection based methods that identify the point
in time (in the training set) past which the time series changes,
and denote this point as the beginning of the training set.

A. Algorithms

Next, we provide a brief description of the three machine
learning algorithms that we use in our experiments to assess
our method, against the three baselines for training machine
learning models.

1) Linear Model with Elastic Net Regularization : Elastic
Net Regularization (ENET) is a state of the art method
for linear regression models [12], that combines L1 and L2
regularization along with the squared loss function. A linear
model has the form:

y = xTβ (17)

The β recovered by the Elastic Net method are:
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β∗ = argmin
β

(‖y −Xβ‖2 + λ2||β||2 + λ1||β ||1)

λ1 and λ2 are parameters that control the L1 and L2
regularization respectively. We use cross validation to tune the
parameters on each training case. We note that with λ1 = 0
we get the Ridge Regression algorithm and with λ2 = 0 the
LASSO algorithm. This method has very low variance and is
particularly effective for cases with small number of samples.

2) Support Vector Regression: Support Vector Regression
(SVR) is the regression version of the popular Support Vector
Machines algorithm. SVR can be used with various kernels
that transform the data before fitting the model. We use the
linear kernel so the the model is linear as in Equation (17).
SVR is a low variance algorithm as well. Unlike the ENET it
uses only L2 regularization and L1 loss function. It also applies
the so called ε -insensitive tube. That means that errors smaller
than ε are ignored in the estimation of β. The parameters
of the model are ε and C. We use a default value of 0.1
for ε, after the data are normalized to zero mean and unit
variance. For the tuning of parameter C, which controls the
level of regularization, we use the heuristic function provided
by liblinear [19], for each training case of the algorithm.

3) Feed-Forward Artificial Neural Network: The Feed-
Forward Artificial Neural Network (ANN) is a complex, high
variance model. As such, it can model arbitrary functions but
at the cost of requiring a large dataset. The building block of
ANN is the node/neuron, where a linear combination of some
inputs is computed, passed through a non-linear activation
function and given as output. The nodes are organized in
layers, with the first layer taking the features x as input and
each next layer taking as input the output of the previous. The
last layer provides the output of the network and, in the case of
regression, has no activation function. All intermediate layers
between the input and the output are called hidden layers. The
weights of the linear combinations are usually computed by
gradient descent using the back-propagation algorithm. There
are many parameters that need to be set for the operation
of ANN the most important of which are the number of
hidden layers, the number of nodes per layer, and the activation
function. In our implementation we used one hidden layer with
5 nodes and the sigmoid activation function.

B. Baselines

We compare our algorithm with three baselines. The first
and most simple is to use the entire dataset as the training set.
The other two are based on a change point detection algorithm
that detects changes in the distribution of a sequence of values.
There are several different such algorithms that can be used,
depending on the assumptions about the data and the aspects
of the distribution that we want to examine. The change point
detection algorithm we select utilizes the Mann-Whitney test
[1] which can detect shifts in the level (mean value) of the time
series, without requiring an assumption about the distribution.
It is a state of the art algorithm that is used for change point
detection.

The Mann-Whitney test is a non-parametric test that is
applied on two samples and evaluates whether they come
from a population with the same mean or from populations
with different means. As a non parametric test, it makes no
assumption about the distribution of the values, so it can
be used with arbitrary distributions. Intuitively, it sorts the
joint population of both samples and then it calculates the
rank of each value, on the joint population. Then it examines
whether there is a significant difference in the ranks between
the two samples. If the ranks of the points in one sample are
consistently higher than those in the other, that indicates that
there is a difference in the means of the distributions.

In order to identify if a point of the time series is a change
point the algorithm compares the part of the time series before
that point and the part after, using the Mann-Whitney test.
If there is a difference between the two parts, the point is
identified as a change point. In order to examine the entire time
series, the algorithm performs the same procedure for every
point. For a more detailed description we refer the reader to
[1].

Baseline 1: Baseline 1 (BL1) is the naive approach where
we do not consider any change in the model and use the entire
dataset D as training set.

Baseline 2: In Baseline 2 (BL2) we identify the changes
in the distribution of Y using the Mann-Whitney test as is
and set as start of our training set the most recent change in
the distribution. We also exclude change points that leave less
than a minimum set of samples for training. Specifically, let
{cj , 1 ≤ j ≤ k, c1 = 1} be the set of change points obtained
by the test. We find cp = max{cj : t − cj > nmin}. We set
as minimum training set size nmin = 20. We use as training
set the points after cp.

We note that Baseline 2 detects changes in the distribution.
However, there may be changes in the underlying model that
do not cause changes in the distribution. Those are not detected
by Baseline 2. In order to account for those we use propose
Baseline 3.

Baseline 3: In Baseline 3 (BL3) we first obtain the training
residual errors of the model. The training residual errors are
the difference between the actual value and the prediction of
the learned model, at each point of the training set. Then
we apply the change point detection algorithm on the time
series of the residual errors. This way we can detect arbitrary
changes in the model. This procedure is very similar to the
one described in [6].

Similarly to Baseline 2, we consider as start of the training
set the most recent change point identified, but exclude change
points that leave less than a minimum set of samples in the
training set. Specifically, we train the model on the whole
training set D and obtain θ∗0 . Then the training residuals are
defined as:

Yres = {yi − f(xi; θ
∗
1), 1 ≤ i ≤ t}

Applying on Yres the exact same procedure described for
Baseline 2 we obtain its change points cp = max{cj : t−cj >
nmin} and select cp = max{cj : t− cj > nmin} as the start
of the training set.



8

C. Datasets and Evaluation Measures
We evaluate the proposed algorithm on two datasets, one

from a real-world application and a synthetic one. On the
synthetic dataset we examine the generalisation performance
of the algorithms, with respect to the bias-variance trade-
off, on time series where the underlying model changes.
We showcase an important advantage that our algorithm has
over state of the art change detection methods on effectively
handling this trade-off.

1) Real Dataset: The real dataset consists of 600 water con-
sumption time series from individual households. The quantity
that we wish to model (y) is the daily water consumption
of the household and the features (x) are the day of week
and the hourly water consumptions of the previous day. Each
time series corresponds to one year of water consumption with
the measurements starting on 1 July 2013 and ending on 30
June 2014. We have found water consumption of individual
households to be difficult to model. Its behaviour displays
both gradual and steep changes. Gradual changes may be due
to seasonal effects, which can be dealt with by traditional
algorithms, but may also be random due to other factors,
such as a slow change in the water consumption habits of
the inhabitants. The cases that we are mostly interested in
are those of random, unpredictable, changes. These are due
to changes in household activity (e.g. a guest arriving, a
vacation/off-work period, an illness, a change in the daily
routine, etc.). Such changes constitute a challenge to the
modelling of the time series, because data prior to the change
may or may not be beneficial to include in the training of our
model. On top of that, water consumption exhibits significantly
random behaviour and is difficult to measure exactly, making
the problem of model change more difficult.

Water consumption data is actually the use case that pro-
vided us with the motivation to study the effects of changing
behaviour on the modelling of time series.

2) Synthetic Dataset: We use a synthetic dataset to high-
light the importance of evaluating the generalisation error of
the model that results from the change point detection pro-
cess and the shortcomings of existing change point detection
methods in that aspect.

In machine learning algorithms there are two sources of
reducible error: bias and variance. Bias is the error that
appears when the model is not able to accurately represent the
data (e.g when a linear model is used to capture a quadratic
relationship). Variance is the error that results from estimating
a parameter from a sample of finite size, in the presence of
random noise. The effect of variance becomes more significant
as the sample size becomes smaller. In order to evaluate both
aspects of the bias-variance trade-off we use the synthetic
dataset described below.

Let time series Y = {yi, 1 ≤ i ≤ 350} be generated by the
following process: We generate 350 vectors xi, 1 ≤ i ≤ 350
of size 100, with each element j of each vector uniformly
distributed in [0, 10]: xij ∼ unif(0, 10), 1 ≤ j ≤ 100. We
generate one vector w of size 100 with wj ∼ unif(0, 5), 1 ≤
j ≤ 100. From w we generate w1 where w1j = wj +
N(0, 2), 1 ≤ j ≤ 100, and w2 where w2j = wj + N(0, 0.5)
(N(µ, σ) is Gaussian distributed noise with mean µ and

Day of Year 80 120 160 200 240 280 320 340 Avg
ITM-stat 1.6 2.2 5.4 5.2 3.4 2.5 2.4 2.7 3.2

ITM-emp 0.5 2.5 5.3 5.9 5.0 0.9 4.4 3.4 3.5
BL2 0.0 2.3 2.6 2.2 2.2 0.4 2.3 -0.1 1.5
BL3 0.2 2.5 1.0 2.9 2.3 0.0 1.8 0.3 1.4

TABLE I
ENET RESULTS ON WATER CONSUMPTION DATASET

Day of Year 80 120 160 200 240 280 320 340 Avg
ITM-stat 0.3 1.5 3.5 3.1 1.5 0.4 0.4 1.0 1.5

ITM-emp 0.0 1.8 4.8 3.4 2.2 3.2 2.3 3.1 2.6
BL2 -1.5 1.6 2.2 0.9 -0.4 -0.9 -0.8 -0.6 0.0
BL3 0.0 2.3 1.6 0.7 -0.9 -2.0 -1.4 -2.1 -0.2

TABLE II
SVR RESULTS ON WATER CONSUMPTION DATASET

variance σ). w1 and w2 represent two changes of the model,
one slighter and one more intense, so that one introduces a
significant bias to the model and the other a smaller bias. We
define yi as:

yi =


xi
Tw1 +N(0, 1), i ∈ [1, 80]

xi
Tw2 +N(0, 1), i ∈ (80, 200]

xi
Tw +N(0, 1), i ∈ (200, 350]

(18)

The underlying model is designed in this way so that it has
two changes. One that introduces a significant bias and one
that introduces a smaller bias. By testing the algorithms on
different time-points of time series generated from this model,
we can evaluate their behaviour with respect to the bias and
variance aspects of the generalisation error.

The synthetic dataset consists of 100 time series generated
by the above process.

Evaluation Metric: In order to evaluate the algorithms we
first calculate the prediction error of each one on a specified
forecast horizon, using the MAE metric:

ˆMAE =
1

ntest

t+ntest∑
i=t+1

|y∗i − yi| (19)

Where y∗i is the prediction of the model for time i, yi is
the actual value and ntest is the size of the forecast horizon.
We then use the normalized improvement of each algorithm
over Baseline 1 (the naive method of using the whole available
dataset as training set) as the evaluation metric. For algorithm
A the improvement I is:

IA =
ˆMAEBL1 − ˆMAEA

ˆMAEBL1
(20)

D. Experiments

In this section we present the results of the experimental
evaluation of the algorithms.

In the results we denote our algorithm as ITM (Iterative
Training Method) with the suffix “stat” for the statistical
version, that uses the t-Test, and“emp” for the empirical
method described in Subsection III-E.
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Day of Year 80 120 160 200 240 280 320 340 Avg
ITM-stat 1.4 2.7 2.8 3.8 2.4 1.7 1.7 0.7 2.2

ITM-emp 0.5 2.2 2.4 4.1 3.4 1.3 2.1 -0.5 2.0
BL2 0.4 3.1 1.6 2.2 1.3 1.7 1.8 0.1 1.5
BL3 0.2 2.5 1.3 1.5 1.3 0.4 1.6 -0.5 1.0

TABLE III
ANN RESULTS ON WATER CONSUMPTION DATASET

BL1 BL2 BL3
ITM-stat 6× 10−17 2× 10−7 4× 10−7

ITM-emp 9× 10−21 7× 10−11 5× 10−13

TABLE IV
ENET P-VALUES

1) Water Consumption Dataset: In Tables I, II, III the
experimental results in terms of % error improvement com-
pared to BL1 are provided. In order to better simulate the
setting of an evolving time series, we apply the algorithms at
several different parts of the dataset, i.e. points in time. Each
column demonstrates the average improvement, over all 600
time series, when the algorithms were applied at the respective
day of year, specified in the top row. The parametrization
for each instance of our algorithm is shown in Table VII.
We experimentally tuned the parameters for each case. The
range we searched for the parameters nv ,nt,ntest,w,α, was
[13, 30],[7, 25],[5, 10], [10, 20], [0.01, 0.3] respectively. In
those ranges we tried a total of 15 configurations (combined,
for all parameters).

As we see, our algorithm provides a considerable improve-
ment over the naive baseline (BL1), by 3.5%, 2.5 % and
2.2 % on average for ENET,SVR and ANN respectively. It
also outperforms the two change point detection approaches
(BL2,BL3), by approximately 2% for ENET and SVR and
0.7% for ANN. The improvement is consistent for every
algorithm and every period of the year. In order to assess
the statistical significance of the results we perform t-tests on
the difference of the errors, between our algorithms and the
baselines. In Tables IV,V,VI we provide the p-values of the
tests, that indicate the probability that the difference is the
result of random variance. We see that in almost all cases the
statistical significance of the improvement is substantial. Thus
we can say that there are, in fact, aspects in the training of
a machine learning model that our algorithm captures more
effectively than the baselines.

The difference between the empirical and the statistical
versions of our algorithm is considerable only in the case of the
SVR algorithm, where the improvement of the is above 1%.
There is also a slight improvement in the case of the Elastic
Net algorithm. This indicates that the assumption of normality
for the error, used in the statistical case, may be violated
by the presence of outliers. Between the three implemented
algorithms the greatest improvement is observed in the case
of the Elastic-Net algorithm. This may be due to the fact
that the sophisticated regularization scheme of this algorithm
makes it able to be trained from very small datasets, thus
responding more quickly to changes in the model. SVR is also
an algorithm able to be trained from small datasets, however
the heuristic function used for the choice of regularization
parameter C may not be optimal and better performance could

BL1 BL2 BL3
ITM-stat 1× 10−8 8× 10−6 1× 10−6

ITM-emp 1× 10−11 1× 10−4 2× 10−6

TABLE V
SVR P-VALUES

BL1 BL2 BL3
ITM-stat 6× 10−10 0.135 7× 10−3

ITM-emp 2× 10−7 4× 10−3 0.043
TABLE VI

NN P-VALUES

be achieved by cross validation.
We note that the performance of the algorithms vary

throughout the year. For example, in the case of the Elastic-
Net algorithm, the improvement ranges from 0.5% to 5.9%,
which shows that the improvement depends on the character-
istics of the time series. The highest improvement is in days
160,200,240, that corresponds to months December,January
and March. This can be attributed to the existence of the winter
holidays, that affect water consumption and subsequently the
training of the model. We can not evaluate the effects of
seasonality because we only have one year of measurements
for each time series.

2) Synthetic Dataset: We apply all algorithms on 100
time series generated from the model described in Subsection
IV-C2. Tables VIII, IX, X demonstrate the results in error
improvement. The parameters nv, nt, w and ntest for the
experiments were set to 25, 10, 10 and 10 respectively. They
were set based on the known characteristics of the synthetic
dataset. To determine α we performed 3 experiments for
each algorithm in the range [0.01, 0.3]. The selected values
were 0.2,0.1,0.1,0.01,0.1 and 0.01 for ENETstat, ENETemp,
SV Rstat, SV Remp, ANNstat and ANNemp respectively.
The synthetic dataset as well as implementations of our
algorithms and the baselines are available for experimentation
at https://goo.gl/LURI3L .

We see that our algorithm provides an improvement over the
naive baseline (BL1), as well as the change point detection
based baselines (BL2, BL3). The improvement over BL1
is greater for ENET (20.4%) and SVR(17.4%) but is also
considerable for ANN (5.3%). The lower improvement for
ANN is most likely due to its requirement for larger sample
size. The empirical method outperforms the statistical on SVR
and ANN. This suggests that evaluating the magnitude of the
change in the error might be beneficial, even in cases where
the normality assumption for the error holds. The improvement
over BL2 and BL3 is also very significant. Indicatively, for the
ENET algorithm the improvement is by 17.5% and 19.7%, for
BL2 and BL3 respectively. The statistical significance of all
improvement is very high. The p-values for the comparisons
of all algorithms fall in the range of [2.6×10−31, 8.5×10−5].

Each time series of the synthetic dataset contains 2 changes
in the underlying model. One that happens at time 80 and
one that happens at time 200, with the one that happens at
time 80 being more intense (Equation 18). In the results (e.g.
Table VIII), we see that after time 80 all the algorithms gain
an advantage over BL1 (columns 2,3). That is the expected
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nt nv ntest w α
E-Net Stat. 10 25 10 20 0.05

E-Net Emp. 20 20 10 20 0.3
SVR Stat. 25 15 10 20 0.2

SVR Emp. 25 15 5 20 0.05
ANN Stat. 13 7 5 10 0.05

ANN Emp. 25 15 5 20 0.05
TABLE VII

PARAMETRIZATION OF ITM

Time 80 120 160 200 240 280 320 Avg
ITM-stat -0.8 11.7 11.1 14.2 30.4 31.7 44.2 20.4

ITM-emp -0.8 11.7 11.1 14.2 30.4 31.7 44.2 20.4
BL2 -1.3 6.6 8.7 -2.9 -3.1 -9.5 22.5 2.9
BL3 -0.3 3.0 7.8 2.7 -18.1 -23.8 34.0 0.7

TABLE VIII
ENET RESULTS ON SYNTHETIC DATASET

behaviour, since the model changes and including the entire
dataset skews the model. After time 200 the second change
in the model happens, which is of lower intensity. As we
see at columns 5-6, after time 200, the performance for our
algorithm increases while baselines BL2, BL3 drop below the
naive baseline BL1. At time 320 all algorithms have a great
improvement over BL1, with the improvement of ITM still
being significantly higher. The behaviour of the baselines at
times 240 and 280 highlights the advantage that our algorithm
gains by evaluating the generalisation error in the change point
selection process. In order to better understand this we need
to see how each algorithm would behave in a time series
generated from the synthetic model (Equation 18), if applied
for example at time 280.

The baseline algorithms BL2 and BL3, that detect changes
in the distribution and the model respectively, generally select
the point 200 as the start of the training set. That may seem
like the optimal choice, since it represents the most recent
change in the model. This choice includes in the training set
only samples that follow the same model as the one we want
to predict. This choice, however, is optimal only in terms
of bias. It does not take into account the other aspect of
the generalisation error, which is variance. It leaves only 80
samples in the training set, which may not be enough for
the algorithm to converge to a good approximation of the
underlying model. This creates a bias-variance trade-off that
defines the optimal choice for the change point.

Shown in Figure 5 is the sequence of errors for the pre-
diction of yi as we include previous points in the dataset for
an example from the synthetic dataset. We see that stopping
the training at x = 200 does not provide the minimum error.
Including several points from the interval [80, 200], although
they are generated from a slightly different model, leads to
a reduction in the error. Including points before x = 80,
however, leads to a very significant increase in the error.

This is a result of the bias-variance trade-off discussed
above. By including points from [80, 200] we introduce a small
bias in our model, because the points of that interval follow
a slightly different model, but we benefit from a significant
reduction in variance, since we have a lot more samples to train
from. On the other hand if we include samples prior to time
80 the introduced bias is larger and, in the time series of the

Time 80 120 160 200 240 280 320 Avg
ITM-stat 0.0 20.2 20.2 4.5 19.2 19.9 23.9 15.4

ITM-emp -0.2 18.9 26.1 5.7 22.2 24.1 25.6 17.4
BL2 -2.1 17.3 23.4 -3.5 0.5 -7.7 -1.1 3.8
BL3 -0.22 14.8 26.2 0.6 -14.0 -10.5 -7.4 1.3

TABLE IX
SVR RESULTS ON SYNTHETIC DATASET

Time 80 120 160 200 240 280 320 Avg
ITM-stat -1.8 16.0 11.0 -4.8 3.4 2.5 -0.2 3.7

ITM-emp 0.2 20.5 13.5 -10.9 -0.2 2.0 12.4 5.3
BL2 -1.3 19.1 13.1 -17.7 -19.9 -35.6 -55.3 -13.9
BL3 -0.1 19.5 11.6 -24.4 -27.2 -32.1 -62.9 -16.5

TABLE X
ANN RESULTS ON SYNTHETIC DATASET

example, the reduction in variance does not overcompensate
for it. The identification of the optimal point with respect
to this trade off is not straight forward since it depends on
the complexity of the model, the characteristics of the change
and the number of samples available since the change. While
existing approaches focus on bias, our algorithm evaluates
both aspects of the generalisation error through the use of
a validation set and achieves better performance.

V. CONCLUSION

We propose an algorithm that optimizes the training pro-
cess of machine learning models on time series where the
underlying model may change through time. Our algorithm
evaluates the generalisation performance of the trained model.
It accounts for an important aspect of the behaviour of machine
learning models, related to the bias-variance trade-off, that is
not addressed by other approaches. We evaluate our algorithm
on both a synthetic and a real-world dataset and show that it
provides a significant improvement.
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