

REPORT ON DELIVERABLE 5.2.1

Consumption Analytics and Forecasting

Engine

DELIVERABLE 5.2.1 2

Abstract

This report presents an overview of the Prototype Deliverable D5.2.1 ɈConsumption Analytics and Forecasting

Engineɉ, which includes all DAIAD software components developed in the context of Tasks 5.2 ɈConsumption

Analyticsɉ and 5.3 ɈScalable Forecasting and What-if Analysisɉ. First, we provide an overview of the processes

and the architecture of the engine. Then, we present the novel FML-kNN algorithmic framework supporting

predictive analytics for water consumption on the city scale, and present the experimental evaluation and

benchmarking of our work.

PROJECT NUMBER: 619186

START DATE OF PROJECT: 01/03/2014

DURATION: 42 months

DAIAD is a research project funded by European Commission's 7th

Framework Programme.

The information in this document reflects the authorɅs views and the

European Community is not liable for any use that may be made of the

information contained therein. The information in this document is

provided ɉas isɉ without guarantee or warranty of any kind, express or

implied, including but not limited to the fitness of the information for a

particular purpose. The user thereof uses the information at his/ her

sole risk and liability.

Dissemination Level Public

Due Date of Deliverable Month 24, 29/ 02/2016

Actual Submission Date 08/07/2016

Work Package WP5 Big Water Data Analysis

Task
Task 5.2 Consumption Analytics

Task 5.3 Scalable Forecasting and What-if Analysis

Type Report

Approval Status Submitted for approval

Version 1.1

Number of Pages 48

Filename
D5.2.1_DAIAD_Consumption_Analytics_and_Forecasting_E

ngine.pdf

DELIVERABLE 5.2.1 3

History

version date reason revised by

0.1 11/01/2016 First draft Sophia Karagiorgou

0.8 28/02/2016 Revisions in all sections
Giorgos Giannopoulos, Yannis

Kouvaras

1.0 01/03/2016 Final version Spiros Athanasiou

1.1 08/07/2016

Updated all sections and introduced
additional sub-sections following
reviewersɅ feedback received during
the Y2 review meeting; document re-

authored as a Report deliverable

Pantelis Chronis, Sophia Karagiorgou,
Giorgos Chatzigeorgakidis, Spiros

Athanasiou, Yannis Kouvaras, Michalis
Alexakis

Author list

organization name contact information

ATHENA RC Spiros Athanasiou spathan@imis.athena-innovation.gr

ATHENA RC Giorgos Giannopoulos giann@imis.athena-innovation.gr

ATHENA RC Sophia Karagiorgou karagior@imis.athena-innovation.gr

ATHENA RC Yannis Kouvaras jkouvar@imis.athena-innovation.gr

ATHENA RC Giorgos Chatzigeorgakidis gchatzi@imis.athena-innovation.gr

ATHENA RC Michalis Alexakis alexakis@imis.athena-innovation.gr

ATHENA RC Pantelis Chronis pchronis@imis.athena-innovation.gr

mailto:spathan@imis.athena-innovation.gr
mailto:giann@imis.athena-innovation.gr
mailto:karagior@imis.athena-innovation.gr
mailto:jkouvar@imis.athena-innovation.gr
mailto:gchatzi@imis.athena-innovation.gr
mailto:alexakis@imis.athena-innovation.gr
mailto:pchronis@imis.athena-innovation.gr

DELIVERABLE 5.2.1 4

Executive Summary

This report presents an overview of the Prototype Deliverable D5.2.1 ɈConsumption Analytics and Forecasting

Engineɉ, which includes all DAIAD software components developed in the context of Tasks 5.2 ɈConsumption

Analyticsɉ and 5.3 ɈScalable Forecasting and What-if Analysisɉ.

In Section 1, we present an overview of the Scalable Analytics and Forecasting engine, covering its major

technology and implementation aspects. First, we revisit the Big Data Engine of DAIAD (Prototype Deliverable

D5.1.1) focusing on its architecture and the various data management and processing frameworks it

integrates. As all analytics and forecasting algorithms are deployed on top of our engine, understanding its

characteristics and capabilities is crucial. In the following, we describe how analytics tasks are managed,

scheduled, and implemented across the different data processing frameworks of DAIAD. Finally, we present

an overview of all implemented analytics and forecasting facilities, distinguishing between those implemented

as out-of-the-box facilities (i.e. queries on top of our engine) vs. those delivered by novel algorithms

developed for the project.

In Section 2, we present our work on developing the novel FML-kNN algorithmic framework, which has been

integrated in the Consumption Analytics and Forecasting Engine to provide predictive analytics at the city level.

FML-kNN supports two major machine learning processes, classification and regression, over high volumes of

water consumption data that share the same distributed, Flink-based kNN joins algorithm. Contrary to similar

approaches, FML-kNN is executed in a single distributed session achieving better time performance and

operational efficiency as it eliminates costly operations, i.e., fetching and storing the intermediate results

among the execution stages.

In Section 3, we present a comparative benchmarking evaluation of FML-kNN based on synthetic data. Further,

we apply and evaluate FML-kNN against real-world data in two major cases for the project: (a) forecasting a

householdsɅ water consumption simultaneously for all households within a city, (b) producing predictive

analytics from shower events performed by multiple households.

DELIVERABLE 5.2.1 5

Abbreviations and Acronyms

SaaS Software-as-a-Service

CSV Comma Separated Values

aNN Artificial Neural Networks

ML Machine Learning

HDFS Hadoop Distributed File System

kNN k Nearest Neighbors

SWM Smart Water Meter

SFC Space Filling Curves

DAG Directed Acyclic Graph

FML-kNN Flink Machine Learning k-Nearest Neighbors

H-zkNNJ Hadoop z-order k-Nearest Neighbors Joins

F-kNN Flink k-Nearest Neighbors

S-kNN Spark k-Nearest Neighbors

DTW Dynamic Time Warping

RMSE Root Mean Squared Error

YARN Yet Another Resource Negotiator

UDF User Defined Function

DELIVERABLE 5.2.1 6

Table of Contents

1. Implementation ... 9

1.1. Overview ... 9

1.2. Data engines ... 9

1.2.1. Hadoop Distributed File System (HDFS) ... 9

1.2.2. HBase .. 10

1.2.3. Hadoop Map Reduce ... 11

1.2.4. Apache Flink ... 12

1.3. Execution ... 13

1.3.1. Data API .. 14

1.4. Analytics facilities .. 16

2. FML-kNN Algorithmic Framework .. 18

2.1. Overview .. 18

2.1.1. FML-kNN components .. 18

2.1.2. Related work .. 19

2.2. Preliminaries ... 20

2.2.1. Classification ... 20

2.2.2. Regression ... 20

2.2.3. Dimensionality reduction ... 21

2.3. FML-kNN ... 22

DELIVERABLE 5.2.1 7

2.3.1. Dimensionality reduction and shifting .. 22

2.3.2. Partitioning ... 23

2.3.3. FML-kNN workflow .. 23

3. Experimental Evaluation .. 28

3.1. Experimental setup .. 28

3.1.1. Metrics .. 28

3.1.2. Parameters... 28

3.2. Benchmarking .. 29

3.2.1. Wall-clock completion ... 30

3.2.2. Scalability ... 31

3.3. Water consumption forecasting .. 31

3.3.1. Feature extraction ... 32

3.3.2. Procedure ... 33

3.3.3. Results ... 34

3.4. Shower predictive analytics .. 36

3.4.1. Feature extraction ... 36

3.4.2. Procedure .. 37

3.4.3. Results .. 37

3.5. Conclusions .. 37

4. Annex: Benchmarking Environment ... 38

5. Annex: Evaluation datasets ... 39

5.1. Synthetic Datasets ... 39

5.1.1. SWM Dataset ... 39

5.1.2. Amphiro a1 Dataset ... 39

5.2. Real-World Datasets ... 40

DELIVERABLE 5.2.1 8

5.2.1. SWM Dataset .. 40

5.2.2. Amphiro a1 Dataset .. 40

6. Annex: Implementation details .. 43

7. References ... 47

DELIVERABLE 5.2.1 9

1. Implementation

1.1. Overview

The Consumption Analytics and Forecasting Engine has been implemented over the Big Water Data

Management engine (cf. D5.1.1).

The engine consists of a software stack which includes the Hadoop Distributed File System (HDFS), offering a

redundant storage environment and high throughput data access for huge volumes of data. It also includes

Flink, which is a scalable data processing platform, lying over the HDFS, supporting MapReduce based

operations and data transformations. The most important characteristic of Flink is that it provides a

mechanism for automatic procedure optimization which achieves better performance of iterative MapReduce

algorithms compared to other platforms.

Figure 1 depicts the software stack of the DAIAD Big Data engine.

Figure 1: DAIAD Big Data Engine stack

1.2. Data engines

1.2.1. Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) is a distributed, highly available and scalable file system, designed to

run on commodity hardware and is an integral component of the Hadoop ecosystem. HDFS splits files in blocks

which are replicated across a set of servers. The storage servers are called DataNodes. A single server in the

cluster, namely the NameNode, is responsible for managing the file system namespace (directory structure),

DELIVERABLE 5.2.1 10

coordinating file replication and maintaining metadata about the replicated blocks. Every time a modification

is made e.g. a file or directory is created or updated, the NameNode creates log entry and updates metadata.

Clients contact the NameNode for file metadata and perform I/O operations directly on the DataNodes. A high

level overview of the HDFS architecture is depicted in Figure 2.

Figure 2: HDFS architecture

The NameNode is a single point of failure in a HDFS cluster. In order to increase availability, the NameNode

maintains multiple copies of the metadata and log files. Moreover, an optional secondary NameNode can be

deployed for creating checkpoints for the metadata and log files. Creating checkpoints allows for faster

recovery times. In addition, HDFS can be configured to use multiple independent NameNodes, thus

implementing many autonomous file system namespaces. The latter feature increases I/O operation

throughput and offers isolation between different applications.

Finally, HDFS is optimized for managing very large files, delivering a high throughput of data using a write-

once, read-many-times pattern. Hence, it is inefficient for handling random reads over numerous small files

or for applications that require low latency.

1.2.2. HBase

Apache HBase is a free, open source, distributed and scalable NoSQL database that can handle tables with

billions of rows consisting of millions of columns. HBase is built on top of HDFS and enhances it with real

time, random read/write access.

The architecture of HBase is similar to that of HDFS. Table data is organized in regions that are managed by a

set of servers, namely RegionServers. Usually a RegionServer is installed on every DataNode of the underlying

HDFS storage cluster. By default, each region is served by a single RegionServer. Still, HBase can be configured

for region replication if availability is more important than consistency. Fault tolerance is attained by storing

HBase files to HDFS. Likewise, an HBase Master node is responsible for monitoring RegionServers and load

balancing. Usually, the HBase Master is installed on the same server with HDFS NameNode. In addition, more

than one HBase Master may be present in a master/salve configuration in order to circumvent single point of

failure issues. Finally, Apache ZooKeeper is used for coordinating and sharing state between master and

DELIVERABLE 5.2.1 11

region servers. Clients connect to ZooKeeper for submitting requests and read and write data directly from

and to the region servers.

HBase integrates seamlessly with the Hadoop Map Reduce framework since they share the same underlying

storage. Moreover, since rows are sorted by row key, HBase scales well for both fast row key scans across

tables as well as single row read operations. Hence, HBase can be efficiently used both as a Hadoop Map

Reduce source as well as a data store for ad-hoc querying and low latency applications.

1.2.3. Hadoop Map Reduce

Hadoop Map Reduce is a big data processing framework that simplifies the development of highly parallelized

and distributed programs. Developing distributed programs requires handling many tasks including data

replication, data transfer between servers, fault recovery, management of many parallel executing tasks, etc.

Hadoop abstracts the complexity of developing parallel and distributed applications by making all the

aforementioned tasks transparent, allowing developers to focus on the problem under consideration.

Figure 3: MapReduce computing model

The Hadoop Map Reduce initial version shared an architecture similar to HDFS. In particular, a TaskTracker

resided on every DataNode that was responsible for performing computations on the specific server. Similar

to the NameNode, a JobTracker was acting as a master node that performed resource management and job

scheduling and monitoring. In newer versions of Hadoop Map Reduce, resource management and job

scheduling has been assigned to a new component, namely YARN. Therefore, the implementation of other

distributed computing models, such as graph processing, over a Hadoop cluster is possible and also Hadoop

Map Reduce focuses exclusively on data processing.

The computing model of Hadoop Map Reduce is depicted in Figure 3. A Map Reduce program requires the

implementation of two methods, namely Map and Reduce. The Map method transforms input data to a set of

DELIVERABLE 5.2.1 12

intermediate key-value pairs which are partitioned on the generated key. Then, the intermediate partitioned

key-value pairs are sorted and grouped by the generated keys. Finally, the created groups are processed by

the Reduce method and the final output is produced. Both intermediate and final results are stored on HDFS.

1.2.4. Apache Flink

Apache Flink is a data processing system for analyzing large datasets. Flink is not only built on top of an

existing MapReduce framework, but also implements its own job execution runtime. Therefore, it can be used

either as an alternative to Hadoop MapReduce platform or as a standalone processing system. When used with

Hadoop, Flink can access data stored in HDFS and request cluster resources from the YARN resource manager.

Flink extends the MapReduce programming model with additional operations, called transformations. An

operation consists of two components:

¶ A User-Defined Function (UDF). The function provided by the user.

¶ A parallel operator function. It parallelizes the execution of the UDF and applies the UDF on its input

data.

The data model used by Flink operations is record-based while in MapReduce it is a key-value pair. Still, key-

value pairs can be mapped to records. All operations are able to start in memory executions and only when

the resources become low they fall back to the external memory. The new operations efficiently support

several data analysis tasks.

Flink allows to model job processing as DAGs of operations, which is more flexible than MapReduce, in which

map operations are strictly followed by reduce operations. The combination of various operations allows for:

¶ Data pipelining. Transformations do not wait for preceding transformations to finish in order to start

processing data.

¶ In-memory data transfer optimizations. Writing to disk is automatically avoided when possible.

Both these characteristics increase the performance, as they reduce disk access and network traffic.

Moreover, Flink efficiently supports iterative algorithms, which are important for Data Mining, Machine

Learning and Graph exploration, since such processes often require iterating over the available data multiple

times. In MapReduce, this becomes expensive since data are transferred between iterations by using the

distributed storage system. In the contrary, Flink supports the execution of iterative algorithms. Figure 4

illustrates FlinkɅs pipelined execution and support of iterations. While the first Map transformation is running,

a second source can be read and a second Map transformation can be initiated in parallel.

Figure 4: Flink's pipelined execution [BF14]

DELIVERABLE 5.2.1 13

Flink offers powerful APIs in Java and Scala. The Flink optimizer compiles the user programs into efficient,

parallel data flows which can be executed on a cluster or a local server. The optimizer is independent of the

actual programming interface and supports cost-based optimization for selecting operation algorithms and

data transfer strategies, in-memory pipelining of operations, reduction of data storage access and sampling

for determining cardinalities.

1.3. Execution

An overview of how jobs are initialized and submitted, as well as, the processing frameworks used for job

execution and how they fit in the Big Water Data Management Engine architecture is presented in Figure 5.

Job execution can be initialized either explicitly by submitting a query to the Data Service, or manually through

the Scheduler Service. In either case, the job is submitted to the Big Water Data Management Engine for

execution.

Data and Scheduler Services are completely decoupled from Job classes implementation details and have no

knowledge of the underlying processing framework used for execution. Information about the processing

framework is encapsulated inside each Job class implementation.

The scheduler service is loosely coupled with Job classes instances through an appropriate interface that all

Job classes must implement. This interface allows the service to configure Job instances with external

parameters before it submitting them for execution.

Job classes are separated into three categories depending on the processing framework they support:

¶ Simple Jobs: These jobs are implemented as simple Java classes and are executed in the same process

at the application server that invokes them. They usually perform simple tasks such as running SQL

scripts or selecting data from the Big Water Data Management Engine for a single or just a few users

only.

¶ Map Reduce Jobs: These jobs are executed using the Map Reduce processing framework, they are

accessing large volumes of data and usually perform simple aggregation and filtering to the data.

¶ Flink Jobǎ: These jobs are executed using the Flink processing framework, they are accessing large

volumes of data and perform complex data analysis operations that may contain recursive operators.

The latter cannot be implemented efficiently using Map Reduce since they require chaining successive

Map and Reduce operations.

Job submission to the Big Water Data Management Engine and the appropriate processing framework is

handled by the Job class implementation. For simple jobs, both the initialization and implementation code

are located inside the Job class. For Flink and Map Reduce jobs, Jobs contain only the initialization logic and

defer the actual implementation to external Java Archive (JAR) files that are loaded and invoked externally by

the Flink and Map Reduce frameworks.

DELIVERABLE 5.2.1 14

Figure 5: Job execution

1.3.1. Data API

The Data Application Programming Interface (API) supports querying data persisted by the Big Water Data

Management Engine developed in WP5 and presented in deliverable D5.1.1. It is exposed as a Hypertext

Transfer Protocol (HTTP) Remote Procedure Call (RPC) API that exchanges JSON encoded messages and has

two endpoints, namely, the Action API and HTTP API endpoints. The former is a stateful API that is consumed

by the DAIAD web applications. The latter is a Cross-Origin Resource Sharing (CORS) enabled stateless API

that can be used by 3rd party applications.

The API exposes data from three data sources, namely, smart water meter data, amphiro b1 data and

forecasting data for smart water meters. The query syntax is common for all data sources. Moreover, smart

water meter and amphiro b1 data can be queried simultaneously. However, a separate request must be

executed for forecasting data.

The API accepts a set of filtering criteria as parameters and returns one or more data series consisting of data

points which in turn have one or more aggregate metrics like sum, min or average values. More specifically

the input parameters are:

¶ Time: Queries data for a specific time interval. An absolute time interval or a relative one (sliding

window) can be defined. Optionally, the time granularity i.e. hour, day, week, month or year, can be

declared that further partitions the time interval in multiple intervals. The Data API returns results for

every of these time intervals.

¶ Population: Specifies one or more groups of users to query. For every user group a new data series

of aggregated data is returned. A query may request data for all the users of a utility, the users of a

cluster, the users of an existing group, a set of specific users or just a single user.

DELIVERABLE 5.2.1 15

¶ Clusters are expanded to segments before executing the query. A segment is equivalent to a group of

users. As a result, declaring a cluster is equivalent to declaring all of its groups.

¶ Optionally, the users of a group may be ranked based on a metric.

¶ Spatial: A query may optionally declare one or more spatial constraints and filters. A spatial constraint

aggregates data only for users whose location satisfies the spatial constraint e.g. it is inside a specific

area. On the contrary, a spatial filter is similar to the population parameter and creates a group of

users based on their location; hence a new data series is returned for every spatial filter.

¶ Metric: The metrics returned by the query. Data API supports min, max, sum, count and average

aggregate operations. Not all data sources support all metrics.

¶ Source: Declares the data source to use. When forecasting data is requested, this parameter is

ignored.

Detailed documentation on the Data API syntax and request examples can be found at:

¶ https://app.dev.daiad.eu/docs/api/index.html.

The Data API is implemented as part of the DAIAD Services presented in Deliverable 1.3. Figure 6 illustrates

the Data API implementation in more detail.

Figure 6: Data API implementation

Query requests are received by the DAIAD Services controller components and forwarded to the Data Service.

The Data Service orchestrates data query execution. It accesses data from several repositories such as user

profile information and smart water meter registration data and expands the query before execution. Query

expansion refers to the process that selects all individual users and their corresponding devices for all groups

to query. In addition, any spatial constraints are applied at this stage. The expanded query is submitted to

the Map Reduce execution engine for computing the query results.

https://app.dev.daiad.eu/docs/api/index.html

DELIVERABLE 5.2.1 16

In addition to the HTTP endpoints, Data API also provides a fluent API for building queries at the server side.

This feature is used by other services and jobs for querying water consumption data. Two distinctive examples

are the Message Service1 and the User Clustering Job2 respectively. The former queries utility and individual

user consumption data in order to generate alerts and recommendations. The latter clusters the users based

on their total water consumption over a predefined time interval.

1.4. Analytics facilities

The following table summarizes the supported analytics along with a short description for each of them and

how it has been implemented.

1 https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/service/message/DefaultMessageService.java
2 https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/jobs/ConsumptionClusterJobBuilder.java

Name Category Short Description Implementation

User Clusters based on

demographics

Clustering Clusters uses in groups

based on demographics

characteristics about income,

age, household size and

apartment size

Java, In process,

Input/Output

PostgreSQL

User Clusters based on

consumption

Clustering Clusters users in groups

based on their water

consumption from smart

water meters for the last two

months

Java, Map Reduce,

Input HBASE, Output

PostgreSQL

Smart Water Meter Data Pre-

Aggregation

Aggregation Computes aggregates for

daily, weekly and monthly

intervals for every user over

a variable time interval

Java, Map Reduce,

Input/Output HBASE

Data Service in Process

Implementation

Aggregation Implements Data Service

execution in process

Java, In process,

Input HBASE

Data Service Map Reduce

Implementation

Aggregation Implements Data Service

execution using Map Reduce

Java, Map Reduce,

Input HBASE, Output

HDFS

Households Clusters Clustering Finds groups of similar

households based on their

water consumption for the

preferable time intervals

JAVA, Flink ML,

Input/Output wrappers

for HDFS

Consumers Clusters Clustering Finds groups of similar

consumers based on their

water consumption for the

preferable time intervals

JAVA, Flink ML,

Input/Output wrappers

for HDFS

https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/service/message/DefaultMessageService.java
https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/jobs/ConsumptionClusterJobBuilder.java

DELIVERABLE 5.2.1 17

Households Synopsis Aggregation Computes total, maximum,

minimum and average

householdsɅ water

consumption for the

preferable time intervals

JAVA, Flink ML,

Input/Output wrappers

for HDFS

Consumers Synopsis Aggregation Computes total, maximum,

minimum and mean

consumersɅ water

consumption for the

preferable time intervals

JAVA, Flink ML,

Input/Output wrappers

for HDFS

Households Characteristics Classification Predicts householdsɅ

characteristics (income, size,

etc.) when contextual data

(i.e. demographics,

behavioral, etc.) are

available based on water use

JAVA, Flink,

Input/Output wrappers

for HDFS

Consumers Characteristics Classification Predicts consumersɅ

characteristics (sex, age,

income, etc.) when

contextual data (i.e.

demographics, behavioral,

etc.) are available based on

water use

JAVA, Flink,

Input/Output wrappers

for HDFS

Households Classes Classification Computes and predicts

householdsɅ water

consumption categories for

the preferable time intervals

JAVA, Flink,

Input/Output wrappers

for HDFS

Households Water

Consumption

Classification - Regression Computes and predicts

householdsɅ water

consumption (in liters) for

the preferable time intervals

JAVA, Flink,

Input/Output wrappers

for HDFS

Consumers Water

Consumption

Classification - Regression Computes and predicts

consumersɅ water

consumption (in liters) for

the preferable time intervals

JAVA, Flink,

Input/Output wrappers

for HDFS

DELIVERABLE 5.2.1 18

2. FML-kNN Algorithmic Framework

In this section, we present our work on developing the novel FML-kNN algorithmic framework, which has been

integrated in the Consumption Analytics and Forecasting Engine to provide predictive analytics at the city level.

FML-kNN supports two major machine learning processes, classification and regression, over high volumes of

water consumption data. Classification enables us to categorize consumersɅ consumption on a city scale, assign

consumers to different consumption classes according to their behavioral characteristics, and provide water

utilities with useful insights. Regression enables us to produce scalable predictive analytics from massive

amounts of water consumption data and perform forecasting tasks for the next week/month/year for the

entire population.

In the following, we present an overview of the frameworkɅs components, the state-of-the-art on scalable

predictive analytics, and our contributions. Next, we present some preliminaries which enable the reader to

follow the models which were incorporated into our algorithms. A detailed presentation follows of the actual

algorithms and their respective execution stages. The experimental evaluation of our work against competing

algorithms and systems is presented in the next section.

2.1. Overview

FML-kNN is a novel algorithmic framework which implements the k-Nearest Neighbors joins algorithm (kNN

joins) [BK04]. kNN joins retrieves the nearest neighbors of every element in a testing dataset (R) from a set

of elements in a training dataset (S) of arbitrary dimensionality. In the context of DAIAD, kNN joins enables

us to efficiently handle massive amounts of water consumption and contextual data. To manage their high

dimensionality, FML-kNN applies a dimensionality reduction method. This introduces loss of accuracy, which

is partly compensated by a data-shifting approach. To parallelize its execution, FML-kNN partitions the data

by calculating partitioning ranges for both testing and training datasets. As this requires costly sorting

operations, it is performed on reduced datasets, which occur through a sampling approach.

The contribution of our work is the provision of two popular machine learning methods (classification and

regression) that share the same distributed, Flink-based kNN joins algorithm. They are both integrated in a

machine learning algorithmic framework, named FML-kNN. Contrary to similar approaches, FML-kNN is

executed in a single distributed session, despite the fact that the algorithm has three sequential stages which

produce intermediate results. This unified implementation achieves better time performance and operational

efficiency as it eliminates costly operations, i.e., fetching and storing the intermediate results among the

execution stages.

2.1.1. FML-kNN components

FML-kNN provides classification and regression, two of the most important ML techniques. In the particular

context of DAIAD, classification enables us to categorize consumersɅ consumption and regression enables us

to forecast water consumption and predict consumersɅ characteristics.

DELIVERABLE 5.2.1 19

Specifically, the components of FML-kNN are the following:

¶ F-kNN probabilistic classifier. It predicts the class/category of each element in a testing dataset (R),

using historical data in a training dataset (S).

¶ F-kNN regressor. It predicts the value of each element in a testing dataset (R), using historical data

in a training dataset (S).

FML-kNN is influenced by the H-zkNNJ [ZL+12] algorithm and is implemented on the Apache Flink Big Data

processing engine, which has various advantages compared to Hadoop (see section 1.2 for details). As a

result, FML-kNN inherits the advantages and characteristics of Apache Flink:

¶ It allows to model operations and jobs as Directed Acyclic Graphs (DAGs), which is more flexible than

the standard MapReduce model where Map operations are strictly followed by Reduce operations.

¶ It allows for data pipelining and in-memory data transfer optimizations (i.e. less data preprocessing

and transfer). This achieves better efficiency as it reduces disk access and network traffic.

¶ It efficiently supports iterative algorithms, which are extremely expensive in the standard MapReduce

framework.

In summary, FML-kNN has three processing stages which have been unified in single Flink session and detailed

in 2.3.3. These are:

¶ Data pre-processing (stage 1). During this stage the dimensions of the data are reduced in order to

minimize computational complexity.

¶ Data partitioning and organization (stage 2). During this stage the dataset is separated into several

sets, i.e. partitions, with each partition processed independently.

¶ kNN computation (stage 3). This stage generates the final kNNs for each data element.

2.1.2. Related work

Several MapReduce-based algorithms for kNN joins have been proposed in the Big Data literature. However,

none of these approaches handles the specific nature of water consumption data (i.e. missing values, outliers,

etc.). Song et al. [SR+15] present a review of the most efficient MapReduce-based algorithms for kNN joins

and conclude that H-zkNNJ [ZL+12] algorithm outperforms in terms of completion time other similar methods.

The most representative among them is RankReduce [SM+10] which uses Locality Sensitive Hashing (LSH)

[IM98]. H-zkNNJ was developed over the Hadoop platform and operates in three (3) separate MapReduce

sessions. Our contribution in FML-kNN is the unification of these sessions into one distributed Flink session.

This achieves better time performance as it reduces multiple access and storage of data.

In the water/energy domain there are multiple applications of a kNN-based classification or regression to

produce predictive analytics. Chen et al. [CD+11] use a kNN classification method to label water data and

identify water usage, focusing however, on very small collections of data. Naphade et al. [NL+11] and Silipo

and Winters [SW13] focused on identifying water and energy consumption patterns, providing analytics and

predicting future consumptions. Similarly, they experimented on data of low granularity. Schwarz et al.

[SL+12] used kNN for classification and short-term prediction in energy consumption by using smart meter

DELIVERABLE 5.2.1 20

data. However, they focused on an in-memory approach (not parallel or distributed), thus limiting the

applicability of their work on larger datasets. FML-kNN partially relates to the work of Kermany et al. [KM+13],

where the kNN algorithm was applied for classification on water consumption data, in order to detect irregular

consumer behavior. Although their approach handles huge volumes of data, they were only limited on

identifying irregularities and no other useful characteristics.

2.2. Preliminaries

In the following, we present basic concepts regarding classification and regression based on kNN joins, as

well as methods for dimensionality reduction.

2.2.1. Classification

To classify a query dataset R (testing) containing new elements, a labelled dataset S (training) is required. A

classifier implemented by using kNN joins algorithm categorizes new elements by using a similarity measure

expressed by a distance function (i.e. Euclidean, Manhattan, Minkowski, etc.). In FML-kNN we used the

Euclidean distance. The distance has as a result to obtain for each lookup element in the testing dataset R the

dominant class (i.e. class membership) which consists of the elementɅs kNN. kNN classification in most cases

also integrates a voting scheme, according to which, the class that appears more times among the nearest

neighbors will be the resulting class. The voting scheme can be weighted when someone takes into account

the distances between the nearest neighbors. Then each nearest neighbor has a weight according to its

distance to the lookup element.

The set of the kNN is expressed as ὢ ὼ ȟὼ ȟȢȢȢȢȟὼ and the class of each one as a set ὅ

 ὧ ȟὧ ȟȢȢȢȟὧ , the weight of each neighbor is calculated as follows [GX+11]:

ύ

Ὠ Ὠ

Ὠ Ὠ
ḊὨ Ὠ

ρ ḊὨ Ὠ

 ȟ Ὥ ρȟȢȢȢȟὯ ρ

where Ὠ is the closest neighbor and Ὠ is the furthest one to the lookup element. By this calculation,

the closest neighbors will be assigned a greater weight.

2.2.2. Regression

Regression is a statistical process, used to estimate the relationship between one dependent variable and

one or more independent variables. In the machine learning domain, regression is a supervised method,

which outputs continuous values (instead of discrete values such as classes, categories, labels, etc.). These

values represent an estimation of the target (dependent) variable for the new observations. A common use

of the regression analysis is the prediction of a variable's values (e.g., future water/energy consumption,

product prices, web pages visibility/prediction of potential visitors), based on existing/historical data. There

are numerous statistical processes that perform regression analysis, however, in the case of kNN, regression

can be performed by averaging the numerical target variables of the kNN as follows.

DELIVERABLE 5.2.1 21

Considering the same set of kNNs ὢ ὼ ȟὼ ȟȢȢȢȢȟὼ and the target variable of each one as ὠ

 ὺ ȟὺ ȟȢȢȢȢȟὺ , the value of a new observation will be calculated as:

ὺ
ὺ

Ὧ
ȟ Ὥ ρȟȢȢȢȟὯ ς

2.2.3. Dimensionality reduction

The curse of dimensionality is an inherent challenge for data analysis tasks, which causes the increase of data

sparsity as their dimensionality increases. In the case of kNN, it also exponentially increases the complexity of

distance calculations. . Further, for the particular case of DAIAD, data dimensionality increases as we combine

water consumption and contextual data from the entire population. Consequently, with the volume of the

data constantly increasing, a dimensionality reduction method is necessary to avoid costly distance

computations.

Dimensionality reduction is a method which reduces the dimensions to one. In the literature, Space Filling

Curves, namely z-order, Gray-code and Hilbert curve (Figure 7) are used. Each curve scans the n-dimensional

space in a dissimilar manner and exhibits different characteristics w.r.t. the optimal space scanning and the

computational complexity.

Figure 7: Space Filling Curves. (a) z-order curve, (b) Grey-code curve, (c) Hilbert curve

¶ Z-order curve (Figure 7(a)) is computed by interleaving the binary codes of an element's features.

This process takes place starting from the most significant bit (MSB) towards the least significant

(LSB). For example, the z-value of a 3-dimensional element with feature values 3 (πρρ), 4 (ρππ)

and 5 (ρρπ), can be formed by first interleaving the MSB of each number (0, 1 and 1) going towards

the LSB, thus, forming a final value of πρρρπρρππ. This is a fast process, not requiring any costly

CPU execution.

¶ Gray-code curve (Figure 7(b)) is very similar to z-order curve as it requires only an extra step. After

obtaining the z-value, it is transformed to Gray-code by performing exclusive-or operations to

successive bits. For example, the Gray-code-value of πρππ will be calculated as follows. Initially,

the MSB is left the same. Then, the second bit will be an exclusive-or of the first and second (πṥ

ρ ρ), the third an exclusive-or of the second and third (ρṥπ ρ) and the fourth an

exclusive-or of the third and fourth (πṥπ π). Thus, the final Grey-code-value will be πρρπ.

DELIVERABLE 5.2.1 22

¶ Finally, the computation of Hilbert curve (Figure 7(c)) requires more complex computations. The

intuition behind Hilbert curve is that two consecutive points are nearest neighbors, thus, avoiding

Ɉjumpingɉ to further elements, as in z-order and Gray-code curves. The curve is generated recursively

by rotating the two bottom quadrants at each recursive step. There are several algorithms that map

coordinates to Hilbert coding. We deployed the methods described in [La00] offering both forward

and inverse Hilbert mapping.

2.3. FML-kNN

This section outlines the design and implementation of FML-kNN. The main contribution of FML-kNN is the

unification of the three different processing stages into a single Flink session. Multi-session implementations,

regardless of the distributed platform on which they are developed and operated, are significantly inefficient

due to the following reasons:

¶ The multiple initializations of the distributed environment. They increase the total wall-clock time

needed by an application in order to produce the final results.

¶ The extra I/O operations during each stage. They introduce latency due to I/O operations and occupy

extra HDFS space.

We avoid the above issues by unifying the distributed sessions into a single one. Figure 8 illustrates the

unified session. The stages are executed sequentially and I/O operations with HDFS take place only during

the start and end of the execution.

Figure 8: Single Flink session

2.3.1. Dimensionality reduction and shifting

To perform dimensionality reduction, we transform the elements of the input dataset into SFC values via either

z-order, or Gray-code, or Hilbert curve. In our case, we enrich the consumption data with contextual features

(temporal/seasonal/meteorological, etc.). We have 16 dimensions in our dataset which makes kNN

computation very difficult especially when the elements count millions of records (see Section 3.2.1). Figure

7(a) shows the way z-order curve fills a two-dimensional space from the smallest z-value to the largest. We

DELIVERABLE 5.2.1 23

notice that some elements are falsely calculated being closer than others, as the curve scans them first. This

in turn creates an impact on the resultɅs accuracy. We overcome the latter by shifting all the elements by

randomly generated vectors and repeating the process using the shifted values. This method compensates the

lost accuracy as it enables scanning the space in an altered sequence. This is demonstrated in Figure 9.

Figure 9: Data shifting. The grey dots represent the shifted values

The four bottom-left elements are shifted twice in the x-axis and once in the y-axis, altering the sequence in

which they are scanned by the z-order curve. Consequently, taking under consideration nearest neighbors of

a point from shifted datasets, one can obtain elements that are close to it, but are missed by the un-shifted

SFC. The limitation of this approach is the fact that it has to be executed multiple times, one for each chosen

shift i ҽ [1, ɖ], where ɖ is the total number of shifts.

2.3.2. Partitioning

A crucial part of developing a MapReduce application is the way input data are partitioned in order to be

delivered to the required reducers. Similar baseline distributed approaches of kNN joins problem perform

partitioning on both R and S datasets in n blocks each and cross-check for nearest neighbors among all possible

pairs, thus requiring n^2 reducers. This step is necessary in order to properly partition the data and feed

them to the n reducers. We avoid this issue by computing n overlapping partitioning ranges for both R and S,

using each elementɅs SFC values. This way, we make sure that the nearest neighbors of each R partitionɅs

elements will be detected in the corresponding S partition. We calculate these ranges after properly sampling

both R and S, due to the fact that this process requires costly sorting of the datasets.

2.3.3. FML-kNN workflow

FML-kNN has the same workflow as other similar approaches [SR+15] (see 2.1.2), and consists of three

processing stages. The workflow of the algorithm is depicted in Figure 10. The operations that each stage of

FML-kNN performs are enumerated below (the Flink operation/transformation is in parentheses):

¶ Data pre-processing (stage 1):

ɍ Performs dimensionality reduction via SFCs on both R and S datasets (Flat Map R/S).

ɍ Shifts the datasets (Flat Map R/S).

ɍ Unifies the datasets and forwards to the next stage (Union).

ɍ Samples the unified dataset (Flat Map Sampling).

DELIVERABLE 5.2.1 24

ɍ Calculates the partitioning ranges and broadcasts them to the next stage (Group Reduce).

¶ Data partitioning and organization (stage 2):

ɍ Partitions the unified dataset into n partitions, using the received partitioning ranges

(Flat Map).

ɍ For each partition and each shifted dataset, the kNNs of each element in dataset R are

calculated (Group Reduce).

¶ kNN computation (stage 3):

ɍ The final kNNs for each element in dataset R are calculated and classification or

regression is performed (Group Reduce).

Figure 10: Single session FML-kNN

In the following, we present each stage in more details.

2.3.3.1. Data pre-processing (stage 1)

The R and S datasets are read as plain text from HDFS and delivered to two separate concurrent flatMap

transformations, identifiable by the input source file. During this stage, the SFC values (z-values for z-order,

h-values for Hilbert and g-values for Grey-code curve) and possible shifts, are calculated and passed to a

union transformation, which creates a union of the two datasets. The unified and transformed datasets are

then forwarded to the next stage (stage 2) and to a sampling process, which is performed by a separate

flatMap transformation. The sampled dataset is then passed on a groupReduce transformation,

grouped by a shift number. This way, ‌ (number of shifts) reducers will be assigned with the task of

calculating the partitioning ranges for R and S datasets, which are then broadcast to the next stage (data

partitioning and organization). The left part of Figure 10 depicts this process.

Algorithm 1 presents the pseudocode of stage 1. The random vectors are initially generated and cached on

HDFS in order to be accessible by all the nodes taking part in the execution. They are then given as input to

the algorithm, along with datasets R and S. Notice that v π
­

, which indicates that the datasets are not

shifted during this iteration. This process takes place ‌ times, where ‌ is the number of shifts (Line 5). After

shifting the datasets, during the first mapping phase (Lines 5-9), the elements' SFC values are calculated and

collected to Ὑ and Ὓ (Ὥ ρȟȢȢȢȟ‌). Then, the sampling is performed by the second mapping phase (Lines

DELIVERABLE 5.2.1 25

10-17). During the reduce phase (Lines 18-22), the partition ranges (2ÒÁÎÇÅ and 3ÒÁÎÇÅ) for each shift

are calculated using the sampled datasets and broadcast to stage 2 (Lines 18-20). The output is the unified

transformed datasets, which finally feed the data partitioning and organization stage (Line 22).

Algorithm 1: Data pre-processing (stage 1)

2.3.3.2. Data partitioning and organization (stage 2)

The transformed datasets of the stage 1 are partitioned to ὲ Ø ‌ blocks via a custom partitioner, after fetching

the previously broadcast partitioning ranges. Each block is then delivered to a different reducer through a

groupBy operation. Finally, the nearest neighbors for each lookup element are calculated via proper range

search operations and passed on the next stage (kNN computation). The middle part of Figure 10 depicts this

process.

Algorithm 2 presents the pseudocode of stage 2. During the map phase (Lines 7-18), after having read each

shift's broadcast partition ranges (Line 6), the received transformed datasets are partitioned into ‌ Ø ὲ

buckets (Ὑ and Ὓ , Ὥ ρȟȢȢȢȟ‌ȟὫ ρȟȢȢȢȟὲ) Lines 13 & 18), ‌ being the number of shifts and n

the number of partitions. The partitions 3 are then sorted and emitted to the reducers (Lines 23-30) along

with the corresponding partitions 2 . There, for each x ɴ R element, a range search is performed on the

proper sorted partition in order for its kNN to be determined (Line 23) and its initial coordinates are

calculated (Line 24). The initial coordinates of all neighboring elements' coordinates are then calculated (Line

26) and their distance to the x ɴ R element is computed (Line 27). Finally, all nearest neighbors are integrated

into the proper dataset (Ὑ , Line 28) along with the calculated distance and feed the stage 3, grouped by

x ɴ R elements.

DELIVERABLE 5.2.1 26

Algorithm 2: Data partitioning and organization (stage 2)

2.3.3.3. kNN computation (stage 3)

The calculated ‌ Ø ὯNN of each R element, are received from stage 2 and forwarded to |R| reduce tasks,

which calculate the final kNNs and perform either classification or regression, depending on user preference.

We extend this approach by assigning a probability to each of the candidate classes for the lookup element.

We consider the set ὖ ὴ where l is the number of classes. The final probability for each class is

derived as follows:

ὴ

ύẗὍὧ ὧ

В ύ
ȟ Ὦ ρȟȢȢȢȟὰ σ

where Ὅὧ ὧ is a function which takes the value 1 if the class of the neighbor ὼ is equal to ὧ.

Finally, we classify the element as:

ὧ ὥὶὫάὥὼ ὖȟ Ὦ ρȟȢȢȢȢȟὰ τ

DELIVERABLE 5.2.1 27

which is the class with the highest probability. This method is used for each element in the testing dataset

(R).

In this stage, we calculate either the probability for each class (classifier) or the final value (regressor) for

each element in R. The result is stored on HDFS in plain text. More details on the several data formats in the

course of the algorithmɅs execution can be found in Annex: Evaluation datasets. The right part of Figure 10

depicts this process.

Algorithm 3 presents the pseudocode of stage 3. During the stage 3 of the algorithm, which consists of only a

reduce operation, kNNs of each R element are fetched from the grouped set of Ὑ . Finally, for each lookup

element either classification (Line 9) or regression (Line 11) is performed, after determining its final nearest

neighbors (Line 7). The results are added to the resulting dataset (Line 9), which is then stored on HDFS (Line

12) in the proper format.

Algorithm 3: kNN computation (stage 3)

DELIVERABLE 5.2.1 28

3. Experimental Evaluation

In this section we present a comparative benchmarking evaluation of FML-kNN based on synthetic data.

Further, we apply and evaluate FML-kNN against real-world data in two major cases for the project: (a)

forecasting a householdsɅ water consumption simultaneously for all households within a city, (b) producing

predictive analytics from shower events performed by multiple households. The experiments were performed

on a pseudo-distributed environment, setup on a machine located at the University of Peloponnese at Tripolis.

More details on the benchmarking environment and the datasets can be found in Annex: Benchmarking

Environment and Annex: Evaluation datasets.

3.1. Experimental setup

3.1.1. Metrics

We use four different well known performance measures in order to evaluate the quality of the results

obtained by the classifier and the regressor. These performance measures are included in the framework in

order to allow expert users to assess the various data analysis tasks. Accuracy and F-Measure are implemented

for classification, while Root Mean Square Error (RMSE) and Coefficient of determination (2) are used to

evaluate the quality of regression. A short description of what each of these metrics represents in our

experimentation is listed below:

¶ Accuracy. The percentage of correct classifications (values from 0 to 100). It indicates the classifier's

ability to correctly identify the proper class for each element.

¶ F-Measure. The weighted average of precision3 and recall4 of classifications (values from 0 to 1). Using

this metric, we ensure good balance between precision and recall, thus, avoiding misinterpretation

of the accuracy.

¶ Root Mean Squared Error (RMSE). Standard deviation between the real and predicted values via

regression. This metric has the same unit as the target variable. It provides us with the insight of how

close the guessed values are to the real ones.

¶ Coefficient of determination (╡). Indicates the quality of the way the model fits the input data. It

takes values from 0 to 1, with 1 being the perfect fit. A good fit means that the regressor is able to

properly identify the variations of the training data.

3.1.2. Parameters

FML-kNN uses a variety of input parameters required by the distributed kNN algorithm, in order to support

the classification and regression processes. Regarding the value of the k parameter that was used throughout

the experiments (Sections 3.2, 3.3 and 3.4) and due to the fact that the optimal value is problem specific, we

3 The fraction of (binary) classifications as ɄtrueɅ that are correct over the whole dataset.
4 The fraction of (binary) classifications as ɄtrueɅ that are correct over the number of elements labelled as ɄtrueɅ.

DELIVERABLE 5.2.1 29

performed a separate cross-validation5 evaluation for each use case. The best k parameter is determined in

order to support the best balance between completion time and accuracy.

FML-kNNɅs core algorithm receives as input a vector of size equal to the dimension of the input dataset,

indicating the weight of each feature according to its significance to the problem. Each feature is multiplied

with its corresponding weight before the execution of the algorithm in order to perform the required scaling,

according to the feature's importance. To automatically determine an optimal feature weighting vector, we

execute a genetic algorithm6, which uses a specific metric as cost function (see Section 3.1.1). The parameters

of the genetic algorithm, such as the size of the population, the probability to perform mutation or crossover,

the elite percentage of the population and the number of the iterations are currently hard-coded, but in a

future extension they will be provided as arguments.

The number of partitions throughout the experimental evaluation is set to 8 and the number of shifts is set to

2. Thus, the level of parallelism of all distributed tasks was set to 16, in order to process the partitions

simultaneously.

3.2. Benchmarking

We present a comparative benchmarking with similar Apache Spark7and Hadoop-based implementations of

the probabilistic classifier (the results are similar for the regressor). Hadoop does not enable the unification

of the sessions because the output cannot be pipelined between the stages and reducers wait the mappers

to finish their execution before they start. For this reason and in order to conduct the benchmarking, we also

implemented the probabilistic classifier in three sessions for Flink and Spark. As a single session version is

not supported in Hadoop, we only implemented the single session version in Spark. FML-kNN as presented

has been implemented in a single session version.

They are all executed on a single node HDFS, over a local YARN resource manager (see Annex: Benchmarking

Environment). This way, each Flink task manager, Spark executor or Hadoop daemon runs on a different YARN

container. The comparison was carried out using the synthetic dataset (see Synthetic Datasets). More

particularly, wall-clock time and scalability comparison was carried-out among:

¶ FML-kNN (single session). The main algorithm, presented in the previous section.

¶ FML-kNN (three sessions). A three-session version of FML-kNN, where each stage is executed by a

different Flink process.

¶ Spark kNN (single session, referred to as S-kNN). An Apache Spark version with the same architecture

as FML-kNN.

5 Cross-validation is implemented by iteratively splitting the entire dataset into ten equal parts and then executing the algorithm the same number of times,

using a different subset as training set while the rest of the sets, unified, comprise the testing set. Cross-validation outputs the average of a specific metric,

across all executions. We used accuracy for classification and RMSE for regression.
6 A genetic algorithm, optimizes the solution for an optimization problem by iteratively randomly mutating (i.e., applying small changes) a population of

solutions, or performing a crossover among them (i.e., combining two or more solutions to a new one). During each iteration, a number of solutions is

chosen as the elite population and remains unchanged. At the end of execution, the solution with the best score (i.e., according to a specific metric) is

chosen as the final solution.
7 http://spark.apache.org

DELIVERABLE 5.2.1 30

¶ S-kNN (three sessions). A three-session version of S-kNN, where each stage is executed by a different

Spark process.

¶ H-zkNNJ. An extended version of the algorithm executed in three separate sessions. We extended over

this algorithm with the ability to perform probabilistic classification.

A one-session version of the H-zkNNJ algorithm is not possible, due to the fact that Hadoop can only execute

one map, followed by one reduce operation. A single session requires the three stages to be executed in a

sequential manner, which is not possible in Hadoop, as it would require mapping to be performed after

reducing operations several times.

Despite significant differences in the distributed processing platformsɅ configuration settings, the different

implementations were configured in order to use the same amount of system resources. A maximum of 16

simultaneous tasks (see Section 3.1.2) are executed in all cases:

¶ For Flink and Spark, a total of 4 task managers (one per CPU) and executors respectively were assigned

32768 MB of Java Virtual Machine (JVM) heap memory. Each task manager and executor was given a

total of 4 processing slots (Flink) or executor cores (Spark).

¶ For Hadoop, the parallelism ability was set to 16 by assigning the mappers and the reducers to the

same number of YARN containers, with 8192 MB of JVM each. Thus, the total amount of JVM heap

memory assigned to each session is always 131072 MB (either 4 x 32768 MB, or 16 x 8192 MB).

3.2.1. Wall-clock completion

Table 1 shows the probabilistic classifier's wall-clock completion time of all Flink, Spark and Hadoop versions,

run in either three or one sessions, where possible. From the 100M elements of the synthetic dataset, 90%

(90M) were used as the training set (S), while the rest 10% (10M) were used as the testing set (R), i.e., the

elements we want to classify. It is apparent that:

¶ Flink-based implementations perform significantly better than the rest, in both three and one-session

versions. This is due to Flink's ability to process tasks in a pipelined manner, which allows the

concurrent execution of successive tasks, thus, gaining in performance by compensating time spent

in other operations (i.e., communication between the cluster's nodes).

¶ For Flink, the total time of the three-session version is similar to the unified one, again due to the

pipelined way of execution, which compensates the time lost during HDFS I/O operations during each

session.

¶ The one-session Spark is significantly faster than the total wall-clock time of the corresponding three-

session setting. This is due to the reduction of the I/O operations on HDFS during the beginning and

the end of each session.

¶ The wall-clock completion time of Spark is slightly lower for each stage than Hadoop, confirming

SparkɅs documented better performance over Hadoop.

DELIVERABLE 5.2.1 31

Table 1: Wall-clock completion time

3.2.2. Scalability

Figure 11 shows the way each version scales in terms of completion time for ten different dataset sizes. The

datasets were generated by splitting the synthetic dataset, obtaining datasets containing from 10M (1M

testing, 9M training), to 100M (10M testing, 90M training) elements. As illustrated in the figure, the Flink-

based implementations exhibit similar performance and scale better as the dataset's size increases. However,

the unified version, i.e., the one used in FML-kNN, has the advantage of not requiring user input and session

initialization between the algorithm's stages. Flink's pipelined execution advantages are apparent if we

compare the scalability performance of all the three-session implementations: The I/O HDFS operations cause

the Spark and Hadoop versions to scale significantly worse than Flink, which performs similarly to the unified

version.

Figure 11: Scalability comparison

3.3. Water consumption forecasting

In this section we use the Smart Water Meter (SWM) dataset (see Annex: Evaluation datasets) to apply FML-

kNN in forecasting future water consumption, based on historical consumption data in the form of time-series.

We ran FML-kNN over all consumersɅ data in order to assess the scalability and the prediction precision of

Version 3 Sessions 1 Session

1st 2nd 3rd Total Time Total Time

F-kNN 03m 45sec 24m 59sec 01m 48sec 30m 32sec 30m 25sec

S-kNN 07m 12sec 29m 15sec 03m 01sec 39m 28sec 33m 03sec

H-zkNNJ 06m 00sec 31m 19sec 05m 54sec 43m 13sec N/A

DELIVERABLE 5.2.1 32

our algorithmic framework. We also conducted an experimental evaluation regarding the three SFCs in order

to determine which of them better fits our needs regarding prediction accuracy. However, there is a trade-off

between the prediction accuracy and the time performance, we leave the user to select the preferable SFC

while executing FML-kNN through the command line.

3.3.1. Feature extraction

Time-series data on water consumption pose several challenges on applying machine learning algorithms for

forecasting purposes. Apart from the actual measurement values, one must take into account their correlation

with previous values, their seasonality, the effect of context factors, etc. [HC11]. To achieve this, we extracted

a total of nine temporal and consumption-related features for each data element. We also integrated five

weather conditions-related features into the dataset. They were obtained via the Weather Underground API8

by taking into account the date of the timestamp for the area of interest.

In the following, we present all the features:

¶ Hour. The hour during which the consumption occurred. In order to adjust to kNN algorithm's nature

and due to the fact that the target value is water consumption, we calculated the average consumption

of each hour, sorted it according to the result and labelled it.

¶ Time Zone. We grouped the hours into four time zones of consumption: 1am - 4am (sleep), 5am -

10am (morning activity), 11am - 7pm (working hours) and 8pm - 12am (evening activity). Similarly,

we sorted and labelled it according to the average time zone consumption.

¶ Day of week. The day of the week from 1 (Monday) to 7 (Sunday). We sorted and labelled it according

to the average daily consumption.

¶ Month. The month, from 1 (January) to 12 (December). We sorted and labelled it according to the

average monthly consumption.

¶ Weekend. This is a binary feature which indicates if the consumption occurred during a weekend. We

decided to include this feature after noticing differences between average hourly consumption during

weekdays and weekends.

¶ Customer group. We run a k-Means9 clustering algorithm, configured to run for time-series data using

Dynamic Time Warping (DTW) as a centroid distance metric, on the weekly average per-hour

consumption for each customer. We determined that ten was the optimal number of clusters,

considering the number of customers (1000) and by taking into consideration the clustering quality.

We measured the latter using the Davies-Bouldin index metric (see Section 3.1.1). Similarly, we sorted

and labelled it according to per cluster average consumption.

¶ Customer ranking. For each hour, we calculated the average hourly consumption of each customer

and sorted according to it. Then, we labelled each element according to its ranking in the sorted list.

¶ Customer class. This feature represents customer groups of one and up to four classes according to

their monthly average consumption, i.e. Ɉenvironmentally friendlyɉ, Ɉnormalɉ, Ɉspendthriftɉ, Ɉsignificantly

spendthriftɉ.

8 https://www.wunderground.com/weather/api/
9 k-Means clustering partitions n elements into k clusters, in which each element belongs to the cluster with the nearest centroid, which is calculated by

averaging the elements of each cluster.

DELIVERABLE 5.2.1 33

¶ Season. The season, from 1 (winter) to 4 (autumn). Similarly, we sorted and labelled it according to

consumption per season.

¶ Temperature. The temperature during the hour (Celsius scale).

¶ Humidity. The relative humidity during the hour (percentage).

¶ Weather conditions. The weather conditions during the hour, integer labelled (i.e. cloudy = 1, sunny

= 2, overcast = 3, etc.).

¶ Continuous rainfall. Amount of hours of continuous rainfall.

¶ Continuous heat. Amount of hours of continuous heat (above 25C).

Each element also contained two target variables, being the exact meter reading at each timestamp and a

binary flag, indicating whether consumption occurred during that hour or not (i.e., if the meter reading was

positive or zero). In the future, we will include further features that affect water demand, such as important

and local events (e.g., national holidays, festivals, football games, etc.).

3.3.2. Procedure

The consumption forecasting is performed for all the households (1000) in the dataset for the last two

available weeks. The procedure is consisted of the following two processes:

¶ Classification. We first execute F-kNN probabilistic classifier, with the testing set (R) comprising of

the last two weeks of water consumption for each household, in order to obtain the possibility of

whether consumption will occur or not, during each hour. The rest of the dataset is used as the

training set (S). We perform binary classification, obtaining an intermediate dataset indicating

whether or not consumption will occur for each testing element.

¶ Regression. Using the hours during which we predicted that water will be consumed, we run F-kNN

regressor, obtaining a full predicted time-series result of water consumption for each user.

Before we execute each algorithm, we determine the optimal scale vector using the genetic approach (see

Section 3.1.2). Also, in order to choose the optimal k parameter for both algorithms, we employed a ten-fold

cross-validation approach. The k value that achieved the best balance between completion time and result

quality was 15, for both F-kNN probabilistic classifier and regressor.

3.3.2.1. SFC accuracy evaluation

FML-kNN supports three SFC-based solutions for reducing the dimensionality of the input data to just one

dimension, namely the z-order, Hilbert and Grey code curves. We evaluated the completion time and

approximation quality of each SFC, in order to select the best choice which balances time performance and

approximation accuracy. Table 2 presents the metric and time performance related results of F-kNN

probabilistic classifier and regressor for each SFC, which we obtained from running the algorithms using the

ten-fold cross-validation.

DELIVERABLE 5.2.1 34

Table 2: Space Filling Curves' performance

All three SFCs experience similar performance. Hilbert curve scores higher in all metrics as expected, however

only slightly. Consequently, we choose the z-order curve to perform water consumption forecasting tasks, as

it exhibits better time performance due to its decreased calculation complexity.

3.3.3. Results

3.3.3.1. Water consumption forecasting

Among all the households and for each hour during the last two available weeks, the classifier correctly

predicted the 74.54% (F-Measure: 0.81) of the testing set's target variables, i.e., the hours during which some

consumption occurred for the two-week period. For these specific hours the regressor achieved a RMSE score

of 19.5 and a Coefficient of determination score of 0.69. The results were combined into a single file, forming

the complete time-series of the dataset's last two weeks' (June 16-30 2014) water consumption prediction for

all the users.

Figure 12 shows four users' consumption prediction versus the actual one, during four different days. The

prediction for user #4 was close to the actual consumption. The results seem to follow the real values, but

are not able to properly follow the observed ones. This indicates that it is rather difficult to accurately predict

a single user's future water consumption, due to possible random or unforeseen events during a day, a fact

which justifies the rather large RMSE score. For example, consumptions higher that 20 liters during an hour

(e.g., user #3 around 6:00) could indicate a shower event, while larger consumptions (>50 liters) over more

than one hour could suggest usage of the washing machine or dish washer (e.g., user #3 from 16:00 to 20:00),

along with other activities.

In order to assess the generalization of the results, we calculated the average RMSE of the hour and volume

of the peak consumption during each day, as well as the average RMSE of the total water use per day, for all

the predictions. The rather high errors, (8.89 hours, 28.9 liters and 132.23 liters respectively), confirm that it

is a hard task to accurately predict random daily events. However, despite the difficulty, our algorithms'

predictions are able to mostly follow the overall behavior during most days (e.g., user #3 and user #1).

Curve Classification Regression

Accuracy F-Measure Wall-clock time RMSE ἠ Wall-clock time

z-order 70.24% 0.775 1m 20sec 18.86 0.64 0m 59sec

Hilbert 70.54% 0.78 1m 32sec 18.69 0.66 1m 15sec

Grey-code 70.4% 0.777 1m 25ec 18.81 0.64 1m 5sec

