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Executive Summary

Thiseporpr esents an overview of the Prototype D
Enginej, w DAl AGditwareonmponerdse s e ladbped i n the cont ex
Anal yti csi and 5. 3i I SAmadlapsiesjForecasting an

In Sectidn we preseamt overview of the Scalable Analytics and Forecasting engine, coverin
technology and implementation aspects. First,Bage DevesiEnlgene of DAIAD (Prototype Delivere
D5.1.1) focusing onrdbstecture and the various data management and processing frame
integrateAs kh analytics and forecasting algorithms are deployed on top of our engine, unde
characteristics @amhbilities is crucial. In the following, Wwewestallyécs tasks are managed,

scheduled, and implemented across the different data processing frameworks of DAIAD. Fi
an overview of all implemented analytics and forecasting facilities, distingmphengehetdeen th
as ouofthebox facilities (i.e. queries on top of our engine) vs. those delivered by novel
developed for the project.

InSectiol we present our work on developing thekidWeallgavitthmic framework, which has beel
integrated in the Consarmmtalytics and Forecasting Engine to provide predictive analytics at tt
FMEKNN supports two major machine learning processes, classification and regression, over
water consumptiontdatahare the same distributédsEdrkNN joins algo@tntrary sonilar
approachesSMIKNN is executed sm@le distributed saslsiening better time performance and
operational efficiency as it eliminates costly operations, i.e., fetching and storing the inter
among the execution stages.

InSectiod) wepreserat comparative benchmarking evadvakiNhb@ased on synthetic data. Further,
we apply and evaluateNMWagainst +eatld data in two ncajees for the project: (a) forecasting a
h o us ewateld cbrssdmptsonultaneodstyall households within a city, (b) producing predict
analytics from shower pggotsned imultipleouseholds
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Abbreviations and Acronyms

SaaS Softwatasa-Service

Csv Comma Separated Values

aNN Artificial Neural Networks

ML Machine Learning

HDFS  Hadoop Distributed File System
KNN kNearest Neighbors

SWM Smart Water Meter

SE Space Filling Curves

DAG Directed Acyclic Graph

FMHUNN Flink Machine LeakiNegrest Neighbors
HANNJ HadoopardekNearest NeighBorss
FINN Flink-Nearest Neighbors

SKNN Spark-Nearest Neighbors

DTW Dynamic Time Warping

RMSE Root Mean Squared Error

YARN  Yet Another Resource Negotiator
UDF User Defined Function
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1lmplementation

1.Dverview

TheConsumption Analytics and Forecasthaps Begimeimplemented over the Big Water Da
Management engine (cf. D5.1.1).

The engine consists of a software stack which includes the Hadoop Distrihutiéerifige System
redundant storage environment and high throughput dat@ exlcesssfaf lata. It also includes
Flinkwhich is a scalable data processing platform, lying suppdhenifi@izduce based
operations and data transformations. The most important characteristic of Flink is that
mechanism faoewatic procedure optimization which achieves better performance of iterative
algorithms compared tqtatierms

Figur&édepicts the software sthekDXIAD Big Data engine.

Flink (Efficient
Distributed General
Data Processing)

Map Reduce (Batch

Data Processing)

v HBASE (Low Latency, Random Access
o« YARN (Resource Management) E Storage)

EEEEER

EEEEEE HDFS2 (Distributed, Reliable, Redundant Storage)

FiguleDAIBLY Data Ertgitie s

1.Z2Data engines
1.2.Hadoop Distributed File System (HDFS)

Hadoop Distributed File System (HDFS) is a distributed, highly available and scalable file sy
run on commodity hardware and is an integral component of the Hadoop ecosystem. HDFS s
which are replicated acrosssarsetr®f The storage servers are called DataNodes. A single ser
cluster, namely the NameNode, is responsible for managing the file system namespace (dir:
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coordinating file replication and maintaining metadata abdibtkes.répkcgateche a modification
is made e.g. a file or directory is created or updated, the NameNode creates log entry and u
Clients contact the NameNode for file metadata and perform I/O operations directly on the D
leveoverview of the HDFS architecture isHigpited in

Metadata (Name, replicas, ...):

Namenode /home/foo/data, 3, ...

Metadata ops v

Read Datanodes Datanodes

’ |
E E B - Replication ‘D - -
m

i = Blocks
. \ N
Rack 1 Write Rack 2
FiguBHDFS architecture

The NameNode is a single point of failure in a HDFS cluster. In order to increase availabilit
maintains multiple coptée metadata and log files. Moreover, an optional secondary NameNCc
deployed for creating checkpoints for the metadata and log files. Creating checkpoints a
recovery times. In addition, HDFS can be configured to amendealktiplamedliodes, thus
implementing many autonomous file system namespaces. The latter feature increases
throughput and offers isolation between different applications.

Finally, HDFS is optimized for managing very large filigh thebughpgtaof data using a write
once, reandanyimes pattern. Hence, it is inefficient for handling random reads over numerou
or for applications that require low latency.

1.2.HBase

Apache HBase is a free, open source, distribbtedNasécdhtabase that can handle tables w
billions of rows consisting of millions of columns. HBase is built on top of HDFS and enha
time, random read/write access.

The architecture of HBase is similar to that of HDIe&ydnabéel dataegons that are managed by
set of servers, namely RegionServers. Usually a RegionServer is installed on every DataNoc
HDFS storage cluster. By default, each region is served by a single RegionSarivgur&dill, HBas
for region replication if availability is more important than consistency. Fault tolerance is att
HBase files to HOkSvise, an HBase Master node is responsible for monitoring RegionServe
balancing. Usually, tke NBater is installed on the same server with HDFS NameNode. In add
than one HBase Master may be present in a master/salve configuration in order to circumve
failure issues. Finally, Apache ZooKeeper is used fod cdhandnpstateabetween master and
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region servers. Clients connect to ZooKeeper for submitting requests and read and write d
and to the region servers.

HBase integrates seamlesbgHatbop Map Reduce framework since they sbhadethengame
storage. Moreover, since rows are sorted by row key, HBase scales well for both fast row
tables as well as single row read operations. Hence, HBase can be efficiently used both a
Reduce source as well asaaléda d@toc querying and low latency applications.

1.2.3Hadoop Map Reduce

Hadoop Map Reduce is a big data processing framework that simplifies the development of h
and distributed programs. Developing distributed programs nequiyetasiendhicigding data

replication, data transfer between servers, fault recovery, management of manyeparallel exe
Hadoop abstracts the complexity of developing parallel and distributed applications by |
aforementionedgdasknsparent, allowing developers to focus on the problem under considerat

2

Sort and Group
by k1

—- oo \
‘é = Map() §
< 3
=" Map()
Transform and Partition Merge
[k1, v1] [k1, [v1, v2, ..]
1 3

FiguBeMapReduce computing model

TheHadoop Map Reduce initial version shared an architecture similar to HDFS. In particula
resideé on every DataNode that was responsible for performing computations on the specific
to the NameNode, a JobTracker was acting as a master node that performed resource mar
scheduling and monitoring. In newer versiondMap Haethome, resource management and jo
scheduling has been assigned to a new component, namely YARN. Therefore, the implem
distributed computing models, such as graph processing, over a Hadoop cluster is possible
Map Rede focuses exclusively on data processing.

The computing model of Hadoop Map Reduce Fsgde@iddedap Reduce program requires the
implementation of twioodg, namely Map and Reduce. The Map method transforms input data
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intermediate kajue pairs which are partitioned on the generated ikegribdiate partitioned
kewalue pairs are sorted and grouped by the generatetikeysateidalpups are processed by
the Reduce method and the final output is produced. Both intermediate and final results are

1.2.Apache Flink

Apache Flink is a data processing system for analyzing large datasets. Flojk o aot only &
existing MapReduce framework, but also implements its own job execution runtime. Therefol
either as alternatiteHadoop MapReduce platformtanded@e processingVgstemsed with

Hadoop, Flink can accessrddtmmdHDFS and request cluster resources from the YARN resourc

Flink extends the MapReduce programming model with additionaltr@msfatiorsiofsalled
operation consists of two components:

1 A Useédefined Function (UDE)nction provided by the user.

1 A parallel operator funkttparallelizes the execution of the UDF and applies the UDF on
data.

The data model used by Flink operatichasedertloild in MapReducleyawpair. Still, key

vale pairs can be mapped to records. All operations are able to start in memory executions
the resources become low they fall back to the external memory. The new operations eff
several data analysis tasks.

Flink allows to motbeprocessing as DAGs of operations, which is more flexible than MapRedL
map operations are strictly followed by reduce operations. The combination of various opere

91 Data pipelinimgansformationaatowvait for precedamgfisrmatidosfinish in order to start
processing data

1 Inmemory data transfer optimid&iioms to disk is automatically avoided when possible.
Both these characteristics increase the performance, as they reduce disk access and netwo

Moreover, Flink efficiently supports iterative algorithms, which are important for Data Mi
Learning and Graph exploration, since such processes often require iterating over the availa
times. In MapReduce, this becomes frpendata are transferred between iterations by using
distributed storage system. In the contrary, Flink supports the execution dfigierdtive algot
il lustrates FlinkANs pipelined execution and
a second source can be read and a second Map transformation can be initiated in parallel.

Source |

Source

FigureFlink's [ipeal execution [BF14]
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Flink offers powerful APIs in Java and Scala. The Flink optimizer compiles the user progre
parallel data flows which can be executed on a cluster or a local server. The optimizer is in
actual programg interface and suppotiaseasbptimization for selecting operation algorithms
data transfer strategimgmory pipelining of operations, reduction of data storage access and
for determining cardinalities.

1.FExecution

An overviewhoWw jobs are initialized and submitted, as well as, the processing frameworks
execution and how they fit in the Big Water Data Management Engine archiRiegtt8e is prese
Job execution can be initialized either explicitly by submitting a queor tondhe digtthEmrgite
the Scheduler Service. In either case, the job is submitted to the Big Water Data Manage
execution.

Data and Scheduler Services are completely decoupled from Job classes implementation de
knowledge bétunderlying processing framework used for execution. Information about the
framework is encapsulated inside each Job class implementation.

The scheduler service is loosely coupled with Job classes instances through at appropriate
Job classes must implement. This interface allows the service to configure Job instanc
parameters before it submitting them for execution.

Job classes are separated into three categories depending on the procespord. framework the

1 Simple Jobs: These jobs are implemented as simple Java classes and are executed in
at the application server that invokes them. They usually perform simple tasks such .
scripts or selecting data from the Big Véatzgddag¢atMENgine for a single or just a few us:
only.

1 Map Reduce Jobs: These jobs are executed using the Map Reduce processing fram
accessing large volumes of data and usually perform simple aggregation and filtering

1 Flink JabThese jobs are executed using the Flink processing framework, they are ac
volumes of data and perform complex data analysis operations that may contain recur
The latter cannot be implemented efficiently using MdeReelyeeesottaning successive
Map and Reduce operations.

Job submission to the Big Water Data Management Engine and the appropriate processi
handled by the Job class implementation. For simple jobs, both the initialinanocodad imple
are located inside the Job class. For Flink and Map Reduce jobs, Jobs contain only the initi.
defer the actual implementation to external Java Archive (JAR) files that are loaded and invi
the Flink and Map Bddarneworks.
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Flink (YARN) Map Reduce (YARN)

Data Service

) Processing Frameworks managed by YARN
Submit

Job Access Data

Scheduler Service
Flink/Map Reduce Execution Engine

HBASE PostgreSQL

Launch Job

Data Storage

DAIAD Services Big Water Data Management Engine

FiguBeJob execution

1.3.Data API

The Data Application Programming Interface (API) supports querying data persisted by the
Management Engine developed in WP5 and presented in delivexkpoleeDmd ppdttest
Transfer Protocol (RéMRradtedur@ll (RPBPI that exchanges JSON encoded messages an
two endpoints, namely, the Action APl and HTTP API endpoints. The former is a stateful AF
by the DAIAD webappig The latterdsoa®rigin Resource Sharinggi@bRS) stateless API
that can be used’pafy applications.

The API exposes data from three data sources, namely, smart water meter data, amphi
forecasting data for smartmetges. The query syntax is common for all data sources. Moreov
water meter and amphiro bl data can be queried simultaneously. However, a separate re
executed for forecasting data.

The API accepts a set of filtering criteeitBssgrataeturns one or more data series consisting o
points which in turn have one or more aggregate metrics like sum, min or average values.
the input parameters are:

1 TimeQueries data for a specific time interval. tihmeainsetusd or a relative one (sliding
window) can be defined. Optionally, the time granularity i.e. hour, day, week, month o
declared that further partitions the time interval in multiple intervals. The Data API rett
everyfdhese time intervals.

1 Populatio®pecifies one or more groups of users to query. For every user group a nev
of aggregated data is returned. A query may request data for all the users of a utility,
cluster, the users of éingxgi®up, a set of specific users or just a single user.
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1 Clusters are expanded to segments before executing the query. A segment is equivale
users. As a result, declaring a cluster is equivalent to declaring all of its groups.

Optionallhe users of a group may be ranked based on a metric.

1 SpatialA query may optionally declare one or more spatial constraints and filters. A spa
aggregates data only for users whose location satisfies the spatial demstspatdifcg. it is
area. On the contrary, a spatial filter is similar to the population parameter and creat
users based on their location; hence a new data series is returned for every spatial fil

1 MetricThe metrics returned by the quABjl fgiports min, max, sum, count and avera
aggregate operations. Not all data sources support all metrics.

1 SourceDeclares the data source to use. When forecasting data is requested, this |
ignored.

Detailed documentation on the Datx ARt g quest examples can be found at:
1 https://app.dev.daiad.eu/docs/api/index.html

The Data API is implemented as part of the DAIAD Services presenfegun® labtratakle 1.3.
the Data APl implementation in more detail.

Controllers for HTTP / Action API

Data Service

Fluent API

Map Reduce Repositories
Execution Engine

DAIAD Services

FigufeData APl implementation

Query requests are received by the DAd&r8kevicemponents and forwarded to the Data Senr
The Data Service orchestrates data query execution. It accesses data from several reposit
profile information and smart water meter registration data and expandsdhiogu&)ydrgfore e:
expansion refers to the process that selects all individual users and their corresponding devi
to query. In addition, any spatial constraints are applied at this stage. The expanded query
the Map Reduceugiwecengine for computing the query results.
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In addition to the HTTP endpoints, Data API also provides a fluent API for building queries ¢
This feature is used by other services and jobs for querying water consumieratapdeg wo dis
are the Message Semvicthe User Clusterfmgspastively. The former queries utility and individ
user consumption data in order to generate alerts and recommendations. The latter clusters
on their total water cphisumover a predefined time interval.

1.4Analytics facilities

The following table summarizes the supported analytics along with a short description for e
how it has been implemented.

Name Category Short Description Implementatior
UseClusters based ol Clustering Clusters uses in grou Java, In process
demographics based on demographi Input/Output

characteristics about in PostgreSQL

age, household size ¢
apartment size

User Clusters based Clustering Clusterssers in groups  Java, Map Reduc
consumption based on their water Input HBASE, Out
consumption from smi PostgreSQL
water meters for the las
months
Smart Water Meter Dati Aggregation Computes aggregates Java, Map Reduc
Aggregation daily, weekly and mon Input/Output HBA:!

intervia for every user c
a variable time interv

Data Service in Proce Aggregation Implements Data Ser\ Java, In process
Implementation execution in process Input HBASE
Data Service Map Rec Aggregation Implements Data Serv  Java, Map Reduc
Implementation execution using Map R¢ Input HBASE, Out

HDFS
Households Clusters Clustering Finds groups of simil; JAVA, Flink ML,
households based on t Input/Output wrapp
water consumption for for BFS
preferable time intervi
Consumers Clusters Clustering Finds groups of simili JAVA, Flink ML,
consumers based on t Input/Output wrapp
water consumption for for DFS

preferable time intervi

Lhttps://github.com/DAIAD#kebiklob/master/src/main/java/eu/daiad/web/service/message/DefaultMessageService.java
2https://github.com/DAIAD+4kebielob/master/src/main/java/eu/daiad/web/jobs/ConsumptionClusterJobBuilder.java
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Households Synopsi

Consumers Synopsi:

Households Characteri

Consumers Characteri

Households Classes

Households Water
Consumption

Consumers Water
Consumption

DELIVERABLE

Aggregation

Aggregation

Classification

Classification

Classification

ClassificatidRegressior

ClassificatkdRegre esi

Computes total, maximr
minimum and averag
househol d:
consumption for the
preferable time interv:

Computes total, maximr
minimum and mean
C 0 ns waterr s
consumption for the

preferable time intervi

Predicts h
characteristics (income
etc.) when contextual «
(i.e. demographics,
behavioral, etc.) are
available based on wate

Predicts c

characteristics (sex, &

income, etc.) when

contextual data (i.e.

demographics, behavic

etc) are available basel
water use

Computes and predic
househol d:
consumption categorie
the preferable time inte

Computes and predic
househol d:
consumption (in liters)
the preferable time inte

Computes and predic
consumer s
consumption (in liters)
the preferable time inte

NAIAN

JAVA, Flink ML,
Input/Output wrapp
for FS

JAVA, Flink ML,
Input/Output wrapp
for HFS

JAVA, Flink,
Input/Output wrapp
for HFS

JAVA, Flink,
Input/Output wrapp
for HFS

JAVA, Flink,
Input/Output wrapp
for HFS

JAVA, Flink,
Input/Output wrapp
for FS

JAVA, Flink,
Input/Output wrapp
for HFS
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2.FMINN Algorithmic Framewc

In this section, we present oudewvekopmng the novekiRNllalgorithmic framework, which has bee!
integrated in the Consumption Analytics and Fore qastvndpEedjicteseoanalwticke city level
FMEKNN supports two major machine learning processes, céagedgiation\archigh volumes of
water consumption@dtea s si f i cati on enabl es us to categ
consumers to different consumption classes according to their behasiud g rovadactexistics
utilties with useful insights. Regression enables us to produce scalable predictive analytic
amounts of water consumption data and perform forecasting tasks for Ayeanéat theek/mon
entire population

In the following, we presentean i ew o f t he f r a-ofheaa orkstaable o mj
predictive analytics, and our contNbutj@present some preliminaries which enable the reade
follow the models which aamomated into our algorithms. A esenltedion follows of the actual
algorithnamd therespective execution Jtagexperimental evaluation of our work against comp
algorithms and systems is presented in the next section.

2.10verview

FMIKNN is a novel algorithmic framewodemnnectsinhd&l&arest Neighbors joins algorithm (kNN
joins) [BK0O4]. kNN joins retrieves the nearest neighbors of every element in a testing datas
of elements in a training dataset (S) of arbitrary dimensionality. In thk& Nojoiest exiabrda\D,
us to efficiently handle massive amounts of water consumption and contextual data. To m
dimensionality, -KNIN applies a dimensionality reduction method. This introduces loss of accl
is partly compensateddigsaifting approach. To parallelize its exdddoparfitans the data

by calculating partitioning ranges for both testing and training datasets. As this requires
operations, it is performed on reduced datasets, whitla sacuplthgoagproach.

The contribution of our work is the provision of two popular machine learning methods (cle
regression) that share the same distritnaeeld kKN joins algorithm. They are both integrated
machine learnatgorithmic framework, nam&NN:-MZontrary to similar approaekidhl, iIEML
executed in a single distributed session, despite the fact that the algorithm has three sequer
produce intermediate results. This unified implenvesthetteratiie performance and operationa
efficiency as it eliminates costly operations, i.e., fetching and storinguttse antengetmte res
execution stages

2.1.EMKNN components

FMikNNprovidedassification and regrassoof the magbartant ML techniduéle particular
context of DAlkBsification enables us to categorizeu me r s A regoessson empbies wsn
to forecasfiter consumptiorpeediot on sumer s A characteristics.
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Specificallye ttomponents ofkNMLare the following:

1 FKNN probabilistic claskifpeedicts the class/category of each element in a testing data
using historical data in a training dataset (S).

1 FKNN regresstrpredicts the value of each element in a testjngsiohgtdsstofial data
in a training dataset (S).

FMENNis influenced byHBA&INJZL+124Igorithmnd is implememedhe ApadiHmkBig Data
processing engwtech has various advantages comparedsee Hadoap@for detailshs a
resultF-MIKNN inheritiseadvantagasdcharacterisbEfApache Elink

1 It allows to model operations anDijeloseasAcyclics®ARs), which is more tleadble
the standadvthpReduce model where Map operations are strictly followed by Reduce o

1 It allows for data pipeliningnaghamy data transfer optimizations (i.e. less data preproce
and transfer). Tthseaes better efficiency as it reduces disk access and network traffic

1 It efficientdypports iterative algorithms, which arexpdnsivellye standavihpReduce
framewark

In summaBRMIKNN has three processing stages whiamif@ee inesingle Flink sesdidetailed
in2.3.3These are:

1 Data p#grocessifgtage 1). During this stage the dimensions of the dataetetveduced
minimize computational complexity

1 Data partitioning and orgarigzatier?). During thistséadatasistseparated into several
setsi.e.partitiopwith eagiartitioprocesseudependéyt
1 KNN computatietage 3). This stage generatekNlNs foratach data element.

2.1.Related work

SeverdMapRedubasedlgorithnisrkNN joins have been prapdbedBig Ditteraturédowever,

none of these approachesth@apéxific natafevater comsption dgiae. missing values, outliers,
etc.)Song et fER+1Present a review of the most efficient Map&dldocehnisrkNN joins

and conclude thadNNJZL+12]lgorithm outperforms in terms of completion time othes.similar me
The most representative amondRérkRdd(8kl+10\vhich usé®cality Sensitive HiaSkihg
[IM98]HANNJIvas developed ovdiddbdeoplatform and operates in three (3) separate MapRed
sessions. Our contributionkMN-idIthe unification of these sessions into oifrdimdsssidiored

This achieves better time performance as it reduces multiple access and storage of data.

Inthe water/energy dothare are multiple applicatioki¢Nblaaedlassificationregression to
producpredictivenalyticEhen et &CD+1ldjsea kNN classification mébdhladbelater datand

identify water usage, foasewghn very small collections. bifapatede et[&IL+11dnd Silipo
andWinterflSW13focusedn identifying water and energy consumption patterns, providing anal
predicting future consum@imilgarlythey experimented on data gfanularity. Schwarz et al.
[SL+12]sedNN for classification andeshoprediction in enengymption by using smart meter
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data Hbwever, they focusean ommemory appro@ott parallel or dist)ibthed limiting the
applicabilay their washk larger datagetdkNNpartially relates to the work of Kerijkaviy E3al.
wherehekNN algorithm was applidddsification on water consumptmnderatateet irregular
consumer behaAitthough their approach handles huge volumes of data, they were only |
identifying irregularities and no other udefidtodsara

2.2Preliminaries

In the following, we prieasict concepts regaiddsegfication and regression lkEde(borgms
well as methods for dimensionality. reduction

2.2.Llassification

To classifgueryatasa®(testingiontaining new elenadabelled dataSeftraininig) required
classifier implemented bitNMijans algorithm categorizes new elements by using a similarity
expressed by a distance function (i.e. Euclidean, Manhattan, Minké&MNkiyestesed rthieML
Eucligan distance. The distance has as a result to obtain for each lookup element in the testi
dominant <c¢lass (i . e. c | a s KNNBKNN rolbssification ip mostveasesc
also integrates a sthegne, accagdmwhich, the class that appears more times among the n
neighbors will be the resultinbhelasding scheme can be weighted when someone takes into
the distanclestween the nearest neighbenseach nearest neighbor has aondilghtt@dts
distance to the lookup element.

The set of tkeN is expresasé @ ho HBhH  and the class of each one &s a set

~ ~

o Mo Mo | the weight of each neighbor is calculated as follows [GX+11

2 2 DQ Q
0 Q  Q h Q phQ p
0 DQ Q

wher& is the closest neighbd& amsithe furtheshe to the lookup elemgrthis calculation,
the closestighbors vbid assigned a greater weight.

2.2.Regression

Regression is a statistical process, used to estimate the relationship between one depend
one or more independent variables. In the machine learning domain, regreassitiwds a supe
which outputs continuous values (instead of discrete values such as classe}y, Tdag¢sgories, ¢
valuesepresent an estimation of the target (dependentheragialdbservations. A common use
oftheregression analyshe pgediction of a variable's valuague gvater/energy consumption,
produgtricesveb pages visibility/prediction of potentidagstas exidtiatpricalata. There

are numerous statiptimegssdsat perform regression amalysiger, in the cadiNofregression

can be performed by averagurgethetdrgetariables of #NN as follows.
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Consideritite same sekNiIsd @ ho HBHw  and the target variable of eaah one as

O N BB |, he value mfiew observation will be calculated as:
. o . .

2.2.Dimensionality reduction

Thecurse of dimensiomalitynherent challenge for data analysis tasks, which causes the incre
sparsigyg their dimensionality increases. In the case of KNN, it also exponentially increases ti
distance calculatidngther, for the particular cade, afaPAdimensidypncreasas we combine
water consumption and contextual data from the entire population. Consequently, with the
data constantly increasing, a dimensionality reduction method is necessary to avoid
comptations

Dimensionality reduction is a method which reduces the dimensions to one. In the literatur
Curves, nanmlyderGragodandHilbexurveHiguré) are used. Each curve scatim#rssional

space in a dissimilar manner and exhibits different characteristics w.r.t. the optimal space ¢
computational complexity.

IV e R
I\I\ I\I | I\ II I | I | I
l \l\ ¢ \1 l—l\ll——o l o——l T
A It - .
TN TS
OV R SR R S O

(a) (b) (©)

Figu®Space Filling Curoede(@urve, (B)dsiegurve, (c) Hilbert curve

1 Zorder curvEiguré&(a)) is computed by interleaving the binary codes of an element's f
This proceakes place starting from the most significant bit (MSB) towards the least
(LSB). For exampley#heezof adBnensional element with feature mgdulgs430 (1t it
and 5p( p It can be formed by first interleaving the MSB ofGsdchnmdibgoing towards
the LSB, thus, forming a finaltwplpepoft p. @ hisrus a fast process, not requiring any cos
CPU execution.

1 Grayxode curveiduré&(b)) is very similafotaler curve as it requires only an extra step. Af
obtaining thevatdue, it is transformed tco@eapy performing excusiperations to
successive bits. For examplesctiua@hag ot p twill be calculated as follows. Initially,
the MSB is left the same. Then, the second bit wilkdreodinhex@ihssisad setosd (

p p), the third an exchosivdé the second and thisd1f p ) and the fourth an
exclusivor of the thinddafourthit(s 1 1 ). Thus, the final-Grégralue will Ilep p.1t
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1 Finally, the computation of HilbeFiguré(e)f requires more complputabons. The
intuition behind Hilbert curve is that two consecutive points are nearest neighbors, t
Jjumpingj t o tfowertarnddésradedurges.elhetcsrye isggenerated recursiv
by rotating the two bottom quad@stis@tursive step. There are several algorithms that
coordinates to Hilbert coding. We deployed the methods@@siteibed bofh forward
and inverse Hilbert mapping.

2.3FMINN

This section outlines the design and implemerddtioifed Fdin contribution-kNNFMLthe
unification of the three different processing stages into a siNgikisdssime asiplementations,
regardless of the distriidatéairan whidimey are developed and opemgdnificanbfficient
due to the following reasons:

1 The oitiple initializations of the distributed enVirepmenteasetoba wadlock time
needed by an applicationritogpdeduce the final results.

1 Thexra I/O operations during eadmsiageduce latedag to 1/0 operations and occupy
extra HDFS space.

We avoid the above issues by unifying the distributed sessiong-igto&illisgle D nlee
unified session. The stages are executed sequentially and 1/O operations with HDFS take
the start and end of the execution.

Data partitioning KNN computation
and organization (Stage 3)

(Stage 2)

Data pre-processing
(Stage 1)

FiguBeSingle Flink session

2.3.Dimensionality reduction and shifting

To perfomimensionality reductiotrangform thkements of the input datasetviatoeSRéither
zorderor Greagode, or Hilbartveln our case, we enrich the consumption data with contextual f
(temporal/seasonal/meteoroletfigal, We have 16 dimensions in our dataset Wihh makes
computation very difficult especially when the elements count millions oBr2JoFigufece Secti
7(a)shows the wayder curve fills adime@nsional space from the swalliestozthe largist.
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noticeéhat some elements are falsely calaylel@sebéan others, as the curve scans them first.
in turn creates an Weoveraane the attshifting allrthee elerhentd by
randomly generated vectors and repeatssyshegpiecehifted valies methoainpensates the

lost accurasyit enabksanning the space in an altered Shopusndemonstrateid)ume.

\

o, b st
N \\ <
\ \
\\/\\ N
" »
N |
[ |
| N

!

FigugeData ghify. The gteyrelaresent the shifted values

The four bottaft elements are shifted twiceaxidltena once in-thxésy altering the sequence in
which they are scanned foydbdecurve. Consequently, takiognsidberation neariggtbme of

a point from shifted datasets, one can obtain elements that are close to it, bish#tednissed k
SFC. The linoimadif this approach is the fact that it has to be executed multiple times, one for
shifte [1,d ], wherq is the total number of shifts.

2.3.Rartitioning

A crucial part of developing a MapReduce apphagtiopus daga are partitoneder to be
delivered to the required reducerdaSeatifaistributed approachi@éNofoins probleenform
partitioning on bothdRSadatasets lhocksch and croBeck for nearest neighbors among all possit
pairs, thus requiring n"2 redaceisgep is necessary in order to properly partition the data al
them to the n reducersoidettais issue by computing n overlapping partitioning ranges for bott
using each el ementA As SFC val ues. This way,
elements will be detected in the corresponding S parti¢idhe $éa @agmdafter properly sampling
both R and S, due to the fact that this process requires costly sorting of the datasets.

2.3.FMINN workflow

FMHENN has the same workflow as other similar approfsdes1[ERatidb]jconsists of three
processing stages. The workflow of the algorithnFigwiéfidieel opdrons that each stage of
FMUENN performs are enumerated below (the Flink operation/transformation is in parenthese

1 Data psgrocessifgtage 1):

¥ Performs dimensionality reduction via SFCs on both Rlahd1&pdRi&sets (
¥ Shifts the datagdet Map R/S
¥ Unifies the datasets and forwards to theUmah stage (

¥ Samples the unified dd&kteMap Sampling
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¥ Calculates the partitioning ranges and broadcasts themGoabp Rexiusge (
1 Data partitioning and orgaKszatier?):

¥ Partitions the unified dataset into n partitions, using the received partitioni
(Flat Map
¥ For each partition and each shifted dataset, the KNNs of each element in d:

calculate@roup Reduce
1 KNN computatietage 3):

¥ Te finakNNs for each element in dataset R are calculated and classific
regression is perfor@radip Red)ce

Stage 1 Stage 2 Stage 3
Flatli\’lap Rrange / Srange
+ Group Reduce
. Flat Map Group Group p| |Classifier /
Union —19 Sampling > Reduce IS R = Reduce Regressor

Flat Map
’ S resultRS

HDFS

Figut® Single sessidNRML
In the following, we present each stage in more details.

2.3.3.1. Data ppeocesg) (stage 1)

The R and S datasets are read as plain text from HDFS and delivered to tlatVvisgparate conct
transformations, identifiable by the input source file. During this stagmlubs Rp@ealues (z
h-values for Hilbert aradugs for Gecege curve) and possible shifts, are calculated and passe
union transformation, which creates a union of the two datasets. The unified and transforme
then forwarded to the next stage (stage 2) and to a samiptingsppectmsned by a separate
flatMap transformation. The sampled dataset is thengraap&educea transformation,
grouped by a shift number. Thignwanper of shifts) reducers will be assigned with the tas
calculating the partiticamggs for R and S datasets, which are then broadcast to the next s
partitioning and organization). The Fifgy@&Qdepicts this process.

Algorithhpresents the pseudocode of stage 1. The random vectors are initially generated &
HDFS in order to be accessible by all the nodes takimgupart. ilittbg @re then given as input tc
the algorithm, along with datasets R and St Naticehtedt indicates that the datasets are no
shifted during this iteration. This process tikessplabceres the number of shifts (Line 5). After

shifting the datasets, during the first mapping ghHaskee kileesehts' SFC values are calculated &
collected¥ andY (Q phgah ). Then, the sampling is performed by the second ¢(hamsng phas
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1017). During the reduce phase @2hethé&artition raryesA(1 a@d® O A1) Aeach shift
are calculated using the sampled datasets and broadcast t@2@)agée dutpasis&he unified
transformed datasets, whicfe&dalgata partitioning and organizétioe 22ge

1 [> The pre-processing stage’s input

Input: Datasets R, § and random vectors V = {vy,...,V,},¥] = T
2 > The output, that will be emitted to the next stage

Output: Transformed datasets RY and S7,i=1,...,e

begin

3
4 > The same procedure is repeated for each shift
5 fori=1,..,ado
6 Ri=R+v;
7 S;i=8S+wv;
8 R}r « cALcSFC(R))
9 Ay :‘r « cALcSFC(S))
10 foreach x € RT U ST do
11 > Sampling
12 r « Ranoom(0, 1)
13 if r < MinThreshold then
14 if x € R; then
15 | InsErTSAMPLE(s, RT)
16 else if x € §; then
17 | InserTSAMPLE(S, §7)
18 Rrange; « caLcRaNGE(RT)
19 Srange; « caLcRanGe(ST)
20 Broapcast(Rrange;, S range;)
21 > Emit to the partitioning and organization stage
22 | returnRY UST
AlgoritinData gnecesgisiage 1)

2.3.3.2. Data partitioning and organization (stage 2)

The transformed datasets of the stage 1 aregpdrtiblmoédad custom partitioner, after fetching
the previously broadcast partitioning ranges. Each block is then delivered to a different re
groupBy operation. Finally, the nearest neighbors for each lookup element are calculated viz
seach operations and passed on the ki stagputation). The middlégand@depicts this
process.

Algorith@presents the pseudocode of stage 2. During the majd§)hase(lliaesd read each
shift's broadcast partition ranges (Line 6), the received transformed datasets@ire partitio
bucketsy( andY ,'Q phssh h'Q phadt) Lines 13 & 1&)eing the number of shifts and

the nonber of partitions. The pa8titioae then sorted and emitted to the reduce38)(bloag 23
with the corresponding pagtitianBhere, for eathR element, a range search is performed on tl
proper sorted partition in orderk¥iN tts be determined (Line 23) and its initial coordinates
calculated (Line 24). The initial coordinates of all neighboring elements' coordinates are then
26) and their distancex® Ehelement is computed (Line 27). FHaedist, mdlighbors are integrated
into the proper dataset (Line 28) along with the calculated distance and feed the stage 3, gr
xN R elements.
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1 ©> This stage’s input are the datasets emitted during the partitioning and organization stage
Input: Datasets R, ST, i=1,..,a

2 > The output, that will be emitted to the next stage
Output: Dataset Ry,

3 begin
4 > Initialization of the dataset to be emitted
5 Rio =0
6 RECEIVEBRroaDcAsT(Rrange;, S range;)
7 > Again, repeat for each shift
8 fori=1,..,ado
9 > Partition the R elements
10 foreach x € Rf do
11 forg=1,..,ndo
12 if zvai(s) € Rrange;(g) then
13 [ |_ ADDINTOPARTITION( 5, R¥)
14 > Partition the S elements
15 foreachx € ST do
16 forg=1,..,ndo
17 if zvarL(s) € Srange;(g) then
18 [ |  AppiNToPARTITION(S, § #)
19 forg=1,..,ndo
20 > Sorting is needed to properly perform range search
21 SORT(S &%)
22 foreach x € R# do
23 RES « RANGESEARCH(x, k, §8%1)
24 CC, « caLcCoorps(x)
25 foreach neighbour € RES do
26 L CCreighbour — CALCCOORDS(neighbour)
27 CD « cacDisT(CC,, CChreighbour)
28 Rixo < ADD(x, neighbour, CD)
29 > Emit to the final stage, grouped by element
30 return R,

AlgoritnData partitioning and organization (stage 2

2.3.3.3. MNMomputation (stage 3)

The calculated NN of each R element, are received from stage 2 and forwarded to |R| rec
which calculate thediiNgl and perform either classification or regression, depending on user p

We extend this approach by assigning a probability to each of the candidate classes for the
We consider théset n wheré is the number of claBsdmal probability for eachsclass
deriveds follows:

v t0D  ©

\ F] 0 )
d B U preiL 0

wheré®o @ is a function which takes the value 1 if the class af the eqightar
Finally, we classify the element as:

~

© ®Oiddoh Q pesEn T
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which is the class with the highest prolmbibthod is used for each element in the testing da
(R).

In this stage, we calculate either the probability for each class (classifier) or the final valug
each element in Re$hl is stored on HDFS in plain text. More details on the several data for
course of the al gorAnbelfEwalstioagdsedstha tightparEigtirddh b e
depicts this process.

AlgorithBpresents theeudocode of stage 3. During the stage 3 of the algorithm, which consis
reduce operatidiNs of each R element are fetched from the gfoupddrsdtyoffor each lookup
element either classification (Line 9) or regrekpismérformed, after determining its final near:
neighbors (Line 7). The results are added to the resulting dataset (Line 9), which is then stor
12) in the proper format.

1 > The input is the grouped by element dataset emitted during the previous stage
Input: Datasets R, Rixo

2 > The algorithm’s results
Output: Dataset R

3 begin

4 > Initialization of the final dataset

5 Ry =10

6 foreach x € Rdo

7 RES « kNN(x, Ri;)

8 if classification then

9 | FIN « crLassiFY(RES)
10 else if regression then
11 | FIN « ReGREss(RES)
12 | Ry « app(s, FIN)
13 &> Store the final results on HDFS
14 | returnR;

Algoritl2iNN computatiare)St
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3.Experimental Evaluation

In this sectiwe present a comparative benchmarking evakkdidrbadeldMin synthetic data.
Further, we apply and evalukbdNFafjainst #eatld data in two major cases for the project: (.
forecasting a househse A wa t esimultameadsiyalinfpuseholds within a city, (b) producing
predictive analytics from showpeduemisd imultipleouseholdbeTexperiments were performed
on a pseuddostributed environment, setup on a machinthéoOaiedrsity of Peloponnese at Tripoli:
More details on the benchmarking environment and the datasetérmaaxBentdumnarkmg
EnvironmemdAnneXEvaluatioatdsets

3.JExperimental setup
3.1.Metrics

We use four different well known performance measures in order to eVvaleateeshésquality
obtained by the classifier and the regressor. These performance measures are included in-
order to allow expert users to assess the various datecaunedgyb-ksasuage implemented

for classification, idule Mean Squard RMISQE) aGdefficient of determgtiare used to
evaluate the quality of regression. A short description of what each of these metrics rej
experimentation is listed:bel

1 AccuracVhe percentage of correct classifications (values from 0 to 100). It indicates tl
ability to correctly identify the proper class for each element.

f FMeasurd&he weighted averpgecisitandrecalbf classificationsgsdiom 0 to 1). Using
this metric, we ensure good balance between precision and recall, thus, avoiding mis
of the accuracy.

1 Root Mean Squared Error. (RfiSErd deviation between the real and predicted value
regression. This megithe same unit as the target variable. It provides us with the insig
close the guessed values are to the real ones.

1 Coefficient of determin#tmlmdicates the quality of the way the model fits the input de
takes values fromlQ wath 1 being the perfect fit. A good fit means that the regressor i
properly identify the variations of the training data.

3.1.Parameters

FMHENN uses a variety of input parameters required by Kbl dilgfoibited in order to support
theclassification and regression processes. Regardin pegarakte rofhidtewas used throughout
the experiments (Se8tbdBand3.4 and due to the fact that the optimal value is problem specit

3The fractionobi nary) classifications as HYtrueA that are correct over
“The fractionobi nary) <cl assifications as HYtrueA that are correct over t
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performed a sepanatssalidatidevaluation for each use case.Kpja@amester is determined in
order to suppttwe best balance between completion time and accuracy.

FMUKINNAsSs core algorithm receives as input a
indicating the weight of each feature according to its significance to the psabldtipligdch feat
with its corresponding weight before the execution of the algorithm in order to perform the re
according to the feature's importance. To automatically determine an optimal feature weig|
executeganetic aldofi which uses a specific metric as cost functiod.{speTBeqaameters

of the genetic algorithm, such as thepzipalafi¢hiee probabilib perfommutaticorcrossoyer
theelitgpercentage of the population and the number of the iterations -aos ed ety reard
future extension they will be provided as arguments.

The number of partitions throughout the espaiuateonals set to 8 and the number of shifts is se
2. Thus, the level of parallelism of all distributed tasks was set to 16, in order to proces:
simultaneously.

3.2Benchmarking

We present a comparative benchmaikingrwipacharmd Hadobpsed implementations of
the probabilistic classifier (the results are similar for the regressor). Hadoop does not enabl
of the sessions because the output cannot be pipelined between the stages and reducers v
to finish their execution before they start. For this reason and in order to conduct the benchr
implemented the probabilistic classifier in three sessions for Flink and Spark. As a single s
not supported in Hadoop, wapdaigented the single session version iAkSHdaak.gfédented

has been implemented in a single session version.

They are all executed on a single node HDFS, over a local YARN Aesmu@enctanagdangsee
EnvironmgnThis waggch Flink task manager, Spark executor or Hadsopnda elnff@nent YARN
container. The comparison was carried out using the synth®yictlitiasPaigedore
particularly, wdick time and scalability comparison-austsacaomngd

1 PAMLKNN (singsession)he main algorithm, preseheegri@vious section.

1 FMUNN (thresessions) thresession version ofkENILwhere each stage is executed by ¢
different Flink process.

1 SparkNN (single session, referredMNolpsnSApache Spark version with the same architec
as FMHINN

5Crossalidation is implemented by iteratively spititenglah®set into ten equal parts and then executing the algorithm the same number of
using a different subset as training set while the rest of the sets, unified, comprigalithetites tongpses. tB@eoaserage of a specific metri
across all executions. We used accuracy for classification and RMSE for regression.

8 Agenetic algorithptjmizes the soluti@nfoptimization probieiteratively randomly mutating (i.e., applying small changes) a population of
solutions, agrforming a crossover among them (i.e., combining two or more solutions to a new one). During eabnseistion, a number of
chosen as the elite population and remains unchanged. At the end of execution, the solutiorcaridimtheobe spscifie (Letriacis

chosen as the final solution.

"http://spark.apache.org
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1 SKNN (three sessign)resession versionkbifNSvhereach stage is executed by a different
Spark process.

1 HANNJAn extended version of the algorithm executed in three separate sessions. We ¢
this algorithm with the abilitiotongeobabilistic classification.

A onsession version of-#¢Nd algorithm is not possible, due to the fact that Hadoop can onl
one map, followed by one reduce operation. A single session requires the three stages to |
sequential manner, which is not possible in Hadoop, as it would require mapping to be p
reducing operations several times.

Despite significant di fferences i n the dist
implemeations were configured in order to use the same amount of system resources. A r
simultaneous tasks (see & é&Riare executed in all cases:

1 Forlmk and Spark, a total of 4 task managers (one per CPU) and executors respectivel
32768 MB of Java Virtual Machine (JVM) heap memory. Each task manager and exec
total of 4 processing slots (Flink) or executor cores (Spark).

1 For Hadoop, the parallelism ability was set to 16 by assigning the mappers and the r
same number of YARN containers, with 8192 MB of JVM each. Thus, the total amot
memory assigned to each session is always 131072 KB (diBhear4 & x 8192 MB).

3.2.Waltlock completion

Tabléshows the probabilistic classitidosknampletion time of all Flink, Spark and Hadoop ver:
run in either three or one sessions, where possible. From the 100M elements of the synthe
(90M) were used as the training set (S), while the rest 10% (10M) were used as the testing
elements we want to classify. Inistappare

1 Flinkbased implementations perform significantly better than the rest, insestidhree and
versions. This is due to Flink's ability to process tasks in a pipelined manner, whi
concurrent execution of successive g@skB)yghaogerformance by compensating time sp:
in other operations (i.e., communication between the cluster's nodes).

1 For Flink, the total time of tkem¢$kree version is similar to the unified one, again due t
pipelined way of executiom campensates the time lost during HDFS 1/0O operations duri
session.

1 The orsession Spark is significantly faster than-thectotahwalf the corresponding three
session setting. This is due to the reduction of the I/0 opeuaitignsherbéti8ng and
the end of each session.

1 The watlock completion time of Spark is slightly lower for each stage than Hadoop,
Spar kAs documented better performance ovVv
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Version 3 Sessions 1 Session
1st 2nd 3rd Total Time Total Time
FINN 03m 45sec 24m 59sec 01m 48sec 30m 32sec 30m 25sec
SINN 07m 12sec 29m 15sec 03m Ol1sec 39m 28sec 33m 03sec
HzRNJ 06m 00sec 31m 19sec 05m 54sec 43m 13sec N/A
Tablke Watllock completion time

3.2.5calability

Figurélshows the way each version scales in terms of completion time for ten different dat:
datasets were generated by splitting the synthetic dataset, obtaining datak@i$ Cdwtaining
testing, 9M training), to 100M (10M testing, 90M training) elements. As illustrated in the fic
based implementations exhibit similar performance and scale better as the dataset's size inc
the unified versionthegne used in-BWN, has the advantage of not requiring user input and se
initialization between the algorithm's stages. Flink's pipelined execution advantages are

compare the scalability performance of-aBdbmithpdementations: The I/O HDFS operations cat
the Spark and Hadoop versions to scale significantly worse than Flink, which performs similz
version.

3000

®=—a& F-KkNN 1 Session
o0 F-KNN 3 Sessions
2500 a—a S-kNN 1 Session
< S-kNN 3 Sessions
e—e H-zKNNJ

2000 -

1500

Wall-Clock Time (sec)

1000

500 -

i i i i
10M 30M 50M 70M 90M
Dataset Size

Figufig Scalability comparison

3.3Water consumptiondorecasti

In this section we usgnthg Water N8WM) dataset fgeeEvaluatioatdse}sdo apply FML
KNN in forecasting future water consumption, bizs¢d@mshisfation data in the forseoksSme
Weran FMILN ov er al | consumer sAN data in order t
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our algorithmic framework. We also conducted an experimental evaluation regardielg the thr
to determine which of them better fits our needs regarding prediction accuracy. Hdfwever, thi
between the prediction accuracy and the time \peldavaaheeyser to select the preferable SF
while executing-lNM\_throughetcommand line.

3.3.Feature extraction

Timeseries data on water consumption pose several challenges on applying machine learnin
forecasting purposes. Apart from the actual measurement values, one must take into accoun
withprevious values, their seasonality, the effect of etolfid&tIfactdosachieve this, we extracted
a total afine temporal and consunepditedeatures for each data element.inkbyiadebive
weather conditiciated featunet®the dataset. They were obtamedeather Undergrodnd API
by taking into account the date of the timestamp for the area of interest.

In the following, we present all the features:

1 HourThe hour during which the consumption occurrequét wdNralgadthm's nature
and due to the fact that the target value is water consumption, we calculated the averas
of each hour, sorted it according to the result and labelled it.

1 Time Zan&/e grouped the hours into four time zsneptddrcolatam (sleep), 5am
10am (morning activity); Zpamworking hours) and1@am (evening activity). Similarly,
we sorted and labelled it according to the average time zone consumption.

1 Day of wedlhe day of the week from 1 @&andynday). We sorted and labelled it accordi
to the average daily consumption.

1 MonthThe month, from 1 (January) to 12 (December). We sorted and labelled it acc
average monthly consumption.

1 Weekendhis is a binary feature whatdsiifdite consumption occurred during a weekend.
decided to include this feature after noticing differences between average hourly const
weekdays and weekends.

f Customer grole run aMkear’xlustering algorithm, configured tionese fars data using
Dynamic Time Warping (DTW) as a centroid distance metric, on thehmeekly ave
consumption for each customer. We determined that ten was the optimal number
considering the number of customers (100@gantblgoteideration the clustering quality
We measured the latter using tB®Oldindadex metric (see Zécti@imilarly, we sorted
and labellgdaccording to per cluster average consumption.

1 Customer ranking each hour, we calculated the average hourly consumption of eact
and sorted according to it. Then, we labelled each element according to its ranking in

1 CustomelassThis feature represents customer groups of one and up to four classes &
their mont hl y aenwonmentallydienisial sppddthydsngn&icantlye .
spendthyrift

8https://www.wunderground.com/weather/api/
9kMeans clustering pagitElementatokclustersn which eaalemerielongs to tHastewith the nearesttrojdvhich is calculated by
averaging the elements of each cluster.
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1 Seasommhe season, from 1 (winterfum@)(&imilarly, we sorted and labelled it according
consumption per season.

1 Temperaturehe temperature during the hour (Celsius scale).
1 Humidityl he relative humidity during the hour (percentage).

1 Weather conditidiiee weather conditionstderiogir, integer lab@léeeccloudyl sunny
= 2 overcast3 etc.)

1 Continuous rainfatiount of hours of continuous rainfall.
1 Continuous heahount of hours of continugakdveaks)

Each element also contained two target wayittiidesxdnt meter reading at each timestamp an
binary flag, indicating whether consumption occurred during that hour or not (i.e., if the mef
positive or zero). In the futureinokidelfurther features that affect wateraheasamipctant

and localents (e.g., national hdkdtiyalfpotbaljame®tc).

3.3.Procedure

The consumption forecasting is perfalinied Hfouseholds (1000) in the dataset for the last t
available weeks. The procedure is consisted of the following two processes:

71 Classificatitve first execukBNF probabilistic classifier, with the testing set (R) compris
the last two weekgabér consumption for each household, in order to obtain the possi
whether consumption will occur or not, during each hour. The rest of the dataset is
training set (S). We perform binary classification, obtaining an enterdiediatg datas
whether or not consumption will occur for each testing element.

1 Regressidarsing the hours during which we predicted that water will be cdhdumed, we
regressor, obtaining a full predistedetsnmesult of water consumeéom deer.

Before we execute each algorithm, we determine the optimal scale vector using the genets
Sectiod.1.p Also, in order to chooserttedkpptemeter for both algorithms, we empfoled a ten
crossalidatiompproach. Thelue that achieved the best balance between completion time ar
guality was 15, for BN probabilistic classifier and regressor.

3.3.2.1. SFC accuracy ievaluat

FMUENN supports threeb&s€ll solutions for reducing the dimensionality of the input data to
dimension, namely -trdez, Hilbert and Grey code curves. We evaluated the completion |
approximation quality of each SFC, inentddretbeast choice which balances time performance
approximation accufabjie2 presents the metric and time performance relatediNMsults of
probabilistclassifier and regressor for each SFC, which we obtained from running the algori
tenfold crosslidation.
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Curve Classification Regression
Accuracy FMeasure Waltlock time RMSH 4] Waltlock time
zorder 70.24% 0.775 1m 20sec 18.86| 0.64 Om 59sec
Hilbert 70.54% 0.78 1m 32sec 18.69| 0.66 1m 15sec
Grexode 70.4% 0.777 1m 25ec 18.81| 0.64 1m 5sec

Tab2Space Filling Curves' performance

All three SFCs experience similar performance. Hilbert curve scores higher in all metrics as ¢
only slightly. Consequently, we chomss theve to perform water confareqagimg tasks, as
it exhibits better time performance due to its decreased calculation complexity.

3.3.Results

3.3.3.1. Water consumption forecasting

Among all the households and for each hour during the last two available weeks, the cla
predictethe 74.54%MEasure: 0.81) of the testing set's target variables, i.e., the hours during v
consumption occurred for-theetwperiod. For these specific hours the regressor achieved a Rl
of 19.5 and a Coefficient of determieatidné.ofhe results were combined into a single file, fo
the complete terees of the dataset's last two week30 (Jbh4) WBater consumption prediction for
all the users.

Figur@2shows four users' consumption prediction versus the actual one, during four differe
prediction for user #4 was close to the actual consumption. The results seem to follow the
are not able toperty follow the observed ones. This indicates that it is rather difficult to accur
a single user's future water consumption, due to possible random or unforeseen events dur
which justifies the rather large RMSE sogrke, Eonsumptions higher that 20 liters during an h
(e.g., user #3 around 6:00) could indicate a shower event, while larger consumptions (>50 |
than one hour could suggest usage of the washing machine or dish waslke00etg .2 W) #3 fror
along with other activities.

In order to assess the generalization of the results, we calculated the average RMSE of the
of the peak consumption during each day, as well as the average RMSE of théotoadll water u
the predictions. The rather high errors, (8.89 hours, 28.9 liters and 132.23 liters respectively
is a hard task to accurately predict random daily events. However, despite the difficulty,

predictions are ablegtiyniollow the overall behavior during most days (e.g., user #3 and user
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