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Abstract 

This report presents an overview of the Prototype Deliverable D5.2.1 ɈConsumption Analytics and Forecasting 

Engineɉ, which includes all DAIAD software components developed in the context of Tasks 5.2 ɈConsumption 

Analyticsɉ and 5.3 ɈScalable Forecasting and What-if Analysisɉ. First, we provide an overview of the processes 

and the architecture of the engine. Then, we present the novel FML-kNN algorithmic framework supporting 

predictive analytics for water consumption on the city scale, and present the experimental evaluation and 

benchmarking of our work.  
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Executive Summary 

This report presents an overview of the Prototype Deliverable D5.2.1 ɈConsumption Analytics and Forecasting 

Engineɉ, which includes all DAIAD software components developed in the context of Tasks 5.2 ɈConsumption 

Analyticsɉ and 5.3 ɈScalable Forecasting and What-if Analysisɉ. 

In Section 1, we present an overview of the Scalable Analytics and Forecasting engine, covering its major 

technology and implementation aspects. First, we revisit the Big Data Engine of DAIAD (Prototype Deliverable 

D5.1.1) focusing on its architecture and the various data management and processing frameworks it 

integrates. As all analytics and forecasting algorithms are deployed on top of our engine, understanding its 

characteristics and capabilities is crucial. In the following, we describe how analytics tasks are managed, 

scheduled, and implemented across the different data processing frameworks of DAIAD. Finally, we present 

an overview of all implemented analytics and forecasting facilities, distinguishing between those implemented 

as out-of-the-box facilities (i.e. queries on top of our engine) vs. those delivered by novel algorithms 

developed for the project. 

In Section 2, we present our work on developing the novel FML-kNN algorithmic framework, which has been 

integrated in the Consumption Analytics and Forecasting Engine to provide predictive analytics at the city level. 

FML-kNN supports two major machine learning processes, classification and regression, over high volumes of 

water consumption data that share the same distributed, Flink-based kNN joins algorithm. Contrary to similar 

approaches, FML-kNN is executed in a single distributed session achieving better time performance and 

operational efficiency as it eliminates costly operations, i.e., fetching and storing the intermediate results 

among the execution stages.  

In Section 3, we present a comparative benchmarking evaluation of FML-kNN based on synthetic data. Further, 

we apply and evaluate FML-kNN against real-world data in two major cases for the project: (a) forecasting a 

householdsɅ water consumption simultaneously for all households within a city, (b) producing predictive 

analytics from shower events performed by multiple households. 
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Abbreviations and Acronyms 

SaaS  Software-as-a-Service 

CSV Comma Separated Values 

aNN Artificial Neural Networks 

ML Machine Learning 

HDFS Hadoop Distributed File System 

kNN k Nearest Neighbors 

SWM Smart Water Meter 

SFC Space Filling Curves 

DAG Directed Acyclic Graph 

FML-kNN Flink Machine Learning k-Nearest Neighbors 

H-zkNNJ Hadoop z-order k-Nearest Neighbors Joins 

F-kNN Flink k-Nearest Neighbors 

S-kNN Spark k-Nearest Neighbors 

DTW Dynamic Time Warping 

RMSE Root Mean Squared Error 

YARN Yet Another Resource Negotiator 

UDF User Defined Function 
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1. Implementation 

1.1. Overview 

The Consumption Analytics and Forecasting Engine has been implemented over the Big Water Data 

Management engine (cf. D5.1.1).  

The engine consists of a software stack which includes the Hadoop Distributed File System (HDFS), offering a 

redundant storage environment and high throughput data access for huge volumes of data. It also includes 

Flink, which is a scalable data processing platform, lying over the HDFS, supporting MapReduce based 

operations and data transformations. The most important characteristic of Flink is that it provides a 

mechanism for automatic procedure optimization which achieves better performance of iterative MapReduce 

algorithms compared to other platforms.  

Figure 1 depicts the software stack of the DAIAD Big Data engine. 

 

Figure 1: DAIAD Big Data Engine stack 

 

1.2. Data engines 

1.2.1. Hadoop Distributed File System (HDFS) 

Hadoop Distributed File System (HDFS) is a distributed, highly available and scalable file system, designed to 

run on commodity hardware and is an integral component of the Hadoop ecosystem. HDFS splits files in blocks 

which are replicated across a set of servers. The storage servers are called DataNodes. A single server in the 

cluster, namely the NameNode, is responsible for managing the file system namespace (directory structure), 
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coordinating file replication and maintaining metadata about the replicated blocks. Every time a modification 

is made e.g. a file or directory is created or updated, the NameNode creates log entry and updates metadata. 

Clients contact the NameNode for file metadata and perform I/O operations directly on the DataNodes. A high 

level overview of the HDFS architecture is depicted in Figure 2.  

 

Figure 2: HDFS architecture 

The NameNode is a single point of failure in a HDFS cluster. In order to increase availability, the NameNode 

maintains multiple copies of the metadata and log files. Moreover, an optional secondary NameNode can be 

deployed for creating checkpoints for the metadata and log files. Creating checkpoints allows for faster 

recovery times. In addition, HDFS can be configured to use multiple independent NameNodes, thus 

implementing many autonomous file system namespaces. The latter feature increases I/O operation 

throughput and offers isolation between different applications.  

Finally, HDFS is optimized for managing very large files, delivering a high throughput of data using a write-

once, read-many-times pattern. Hence, it is inefficient for handling random reads over numerous small files 

or for applications that require low latency. 

1.2.2. HBase 

Apache HBase is a free, open source, distributed and scalable NoSQL database that can handle tables with 

billions of rows consisting of millions of columns. HBase is built on top of HDFS and enhances it with real 

time, random read/write access. 

The architecture of HBase is similar to that of HDFS. Table data is organized in regions that are managed by a 

set of servers, namely RegionServers. Usually a RegionServer is installed on every DataNode of the underlying 

HDFS storage cluster. By default, each region is served by a single RegionServer. Still, HBase can be configured 

for region replication if availability is more important than consistency. Fault tolerance is attained by storing 

HBase files to HDFS. Likewise, an HBase Master node is responsible for monitoring RegionServers and load 

balancing. Usually, the HBase Master is installed on the same server with HDFS NameNode. In addition, more 

than one HBase Master may be present in a master/salve configuration in order to circumvent single point of 

failure issues. Finally, Apache ZooKeeper is used for coordinating and sharing state between master and 
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region servers. Clients connect to ZooKeeper for submitting requests and read and write data directly from 

and to the region servers. 

HBase integrates seamlessly with the Hadoop Map Reduce framework since they share the same underlying 

storage. Moreover, since rows are sorted by row key, HBase scales well for both fast row key scans across 

tables as well as single row read operations. Hence, HBase can be efficiently used both as a Hadoop Map 

Reduce source as well as a data store for ad-hoc querying and low latency applications. 

1.2.3. Hadoop Map Reduce 

Hadoop Map Reduce is a big data processing framework that simplifies the development of highly parallelized 

and distributed programs. Developing distributed programs requires handling many tasks including data 

replication, data transfer between servers, fault recovery, management of many parallel executing tasks, etc. 

Hadoop abstracts the complexity of developing parallel and distributed applications by making all the 

aforementioned tasks transparent, allowing developers to focus on the problem under consideration. 

 

Figure 3: MapReduce computing model 

The Hadoop Map Reduce initial version shared an architecture similar to HDFS. In particular, a TaskTracker 

resided on every DataNode that was responsible for performing computations on the specific server. Similar 

to the NameNode, a JobTracker was acting as a master node that performed resource management and job 

scheduling and monitoring. In newer versions of Hadoop Map Reduce, resource management and job 

scheduling has been assigned to a new component, namely YARN. Therefore, the implementation of other 

distributed computing models, such as graph processing, over a Hadoop cluster is possible and also Hadoop 

Map Reduce focuses exclusively on data processing. 

The computing model of Hadoop Map Reduce is depicted in Figure 3. A Map Reduce program requires the 

implementation of two methods, namely Map and Reduce. The Map method transforms input data to a set of 
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intermediate key-value pairs which are partitioned on the generated key. Then, the intermediate partitioned 

key-value pairs are sorted and grouped by the generated keys. Finally, the created groups are processed by 

the Reduce method and the final output is produced. Both intermediate and final results are stored on HDFS. 

1.2.4. Apache Flink 

Apache Flink is a data processing system for analyzing large datasets. Flink is not only built on top of an 

existing MapReduce framework, but also implements its own job execution runtime. Therefore, it can be used 

either as an alternative to Hadoop MapReduce platform or as a standalone processing system. When used with 

Hadoop, Flink can access data stored in HDFS and request cluster resources from the YARN resource manager. 

Flink extends the MapReduce programming model with additional operations, called transformations. An 

operation consists of two components: 

¶ A User-Defined Function (UDF). The function provided by the user. 

¶ A parallel operator function. It parallelizes the execution of the UDF and applies the UDF on its input 

data.  

The data model used by Flink operations is record-based while in MapReduce it is a key-value pair. Still, key-

value pairs can be mapped to records. All operations are able to start in memory executions and only when 

the resources become low they fall back to the external memory. The new operations efficiently support 

several data analysis tasks. 

Flink allows to model job processing as DAGs of operations, which is more flexible than MapReduce, in which 

map operations are strictly followed by reduce operations. The combination of various operations allows for: 

¶ Data pipelining. Transformations do not wait for preceding transformations to finish in order to start 

processing data. 

¶ In-memory data transfer optimizations. Writing to disk is automatically avoided when possible. 

Both these characteristics increase the performance, as they reduce disk access and network traffic. 

Moreover, Flink efficiently supports iterative algorithms, which are important for Data Mining, Machine 

Learning and Graph exploration, since such processes often require iterating over the available data multiple 

times. In MapReduce, this becomes expensive since data are transferred between iterations by using the 

distributed storage system. In the contrary, Flink supports the execution of iterative algorithms. Figure 4 

illustrates FlinkɅs pipelined execution and support of iterations. While the first Map transformation is running, 

a second source can be read and a second Map transformation can be initiated in parallel. 

 

Figure 4: Flink's pipelined execution [BF14] 
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Flink offers powerful APIs in Java and Scala. The Flink optimizer compiles the user programs into efficient, 

parallel data flows which can be executed on a cluster or a local server. The optimizer is independent of the 

actual programming interface and supports cost-based optimization for selecting operation algorithms and 

data transfer strategies, in-memory pipelining of operations, reduction of data storage access and sampling 

for determining cardinalities. 

 

1.3. Execution 

An overview of how jobs are initialized and submitted, as well as, the processing frameworks used for job 

execution and how they fit in the Big Water Data Management Engine architecture is presented in Figure 5. 

Job execution can be initialized either explicitly by submitting a query to the Data Service, or manually through 

the Scheduler Service. In either case, the job is submitted to the Big Water Data Management Engine for 

execution.  

Data and Scheduler Services are completely decoupled from Job classes implementation details and have no 

knowledge of the underlying processing framework used for execution. Information about the processing 

framework is encapsulated inside each Job class implementation.  

The scheduler service is loosely coupled with Job classes instances through an appropriate interface that all 

Job classes must implement. This interface allows the service to configure Job instances with external 

parameters before it submitting them for execution. 

Job classes are separated into three categories depending on the processing framework they support: 

¶ Simple Jobs: These jobs are implemented as simple Java classes and are executed in the same process 

at the application server that invokes them. They usually perform simple tasks such as running SQL 

scripts or selecting data from the Big Water Data Management Engine for a single or just a few users 

only. 

¶ Map Reduce Jobs: These jobs are executed using the Map Reduce processing framework, they are 

accessing large volumes of data and usually perform simple aggregation and filtering to the data. 

¶ Flink Jobǎ: These jobs are executed using the Flink processing framework, they are accessing large 

volumes of data and perform complex data analysis operations that may contain recursive operators. 

The latter cannot be implemented efficiently using Map Reduce since they require chaining successive 

Map and Reduce operations. 

Job submission to the Big Water Data Management Engine and the appropriate processing framework is 

handled by the Job class implementation. For simple jobs, both the initialization and implementation code 

are located inside the Job class. For Flink and Map Reduce jobs, Jobs contain only the initialization logic and 

defer the actual implementation to external Java Archive (JAR) files that are loaded and invoked externally by 

the Flink and Map Reduce frameworks. 
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Figure 5: Job execution 

1.3.1. Data API 

The Data Application Programming Interface (API) supports querying data persisted by the Big Water Data 

Management Engine developed in WP5 and presented in deliverable D5.1.1. It is exposed as a Hypertext 

Transfer Protocol (HTTP) Remote Procedure Call (RPC) API that exchanges JSON encoded messages and has 

two endpoints, namely, the Action API and HTTP API endpoints. The former is a stateful API that is consumed 

by the DAIAD web applications. The latter is a Cross-Origin Resource Sharing (CORS) enabled stateless API 

that can be used by 3rd party applications. 

The API exposes data from three data sources, namely, smart water meter data, amphiro b1 data and 

forecasting data for smart water meters. The query syntax is common for all data sources. Moreover, smart 

water meter and amphiro b1 data can be queried simultaneously. However, a separate request must be 

executed for forecasting data. 

The API accepts a set of filtering criteria as parameters and returns one or more data series consisting of data 

points which in turn have one or more aggregate metrics like sum, min or average values. More specifically 

the input parameters are: 

¶ Time: Queries data for a specific time interval. An absolute time interval or a relative one (sliding 

window) can be defined. Optionally, the time granularity i.e. hour, day, week, month or year, can be 

declared that further partitions the time interval in multiple intervals. The Data API returns results for 

every of these time intervals. 

¶ Population: Specifies one or more groups of users to query. For every user group a new data series 

of aggregated data is returned. A query may request data for all the users of a utility, the users of a 

cluster, the users of an existing group, a set of specific users or just a single user. 
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¶ Clusters are expanded to segments before executing the query. A segment is equivalent to a group of 

users. As a result, declaring a cluster is equivalent to declaring all of its groups. 

¶ Optionally, the users of a group may be ranked based on a metric.  

¶ Spatial: A query may optionally declare one or more spatial constraints and filters. A spatial constraint 

aggregates data only for users whose location satisfies the spatial constraint e.g. it is inside a specific 

area. On the contrary, a spatial filter is similar to the population parameter and creates a group of 

users based on their location; hence a new data series is returned for every spatial filter. 

¶ Metric: The metrics returned by the query. Data API supports min, max, sum, count and average 

aggregate operations. Not all data sources support all metrics. 

¶ Source: Declares the data source to use. When forecasting data is requested, this parameter is 

ignored. 

Detailed documentation on the Data API syntax and request examples can be found at: 

¶ https://app.dev.daiad.eu/docs/api/index.html. 

The Data API is implemented as part of the DAIAD Services presented in Deliverable 1.3. Figure 6 illustrates 

the Data API implementation in more detail.  

 

Figure 6: Data API implementation 

Query requests are received by the DAIAD Services controller components and forwarded to the Data Service. 

The Data Service orchestrates data query execution. It accesses data from several repositories such as user 

profile information and smart water meter registration data and expands the query before execution. Query 

expansion refers to the process that selects all individual users and their corresponding devices for all groups 

to query. In addition, any spatial constraints are applied at this stage. The expanded query is submitted to 

the Map Reduce execution engine for computing the query results. 

https://app.dev.daiad.eu/docs/api/index.html


DELIVERABLE 5.2.1            16 

In addition to the HTTP endpoints, Data API also provides a fluent API for building queries at the server side. 

This feature is used by other services and jobs for querying water consumption data. Two distinctive examples 

are the Message Service1 and the User Clustering Job2 respectively. The former queries utility and individual 

user consumption data in order to generate alerts and recommendations. The latter clusters the users based 

on their total water consumption over a predefined time interval. 

 

1.4. Analytics facilities 

The following table summarizes the supported analytics along with a short description for each of them and 

how it has been implemented. 

 

                                                        
1 https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/service/message/DefaultMessageService.java  
2 https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/jobs/ConsumptionClusterJobBuilder.java  

Name Category Short Description Implementation 

User Clusters based on 

demographics 

Clustering Clusters uses in groups 

based on demographics 

characteristics about income, 

age, household size and 

apartment size 

Java, In process, 

Input/Output 

PostgreSQL   

User Clusters based on 

consumption 

Clustering Clusters users in groups 

based on their water 

consumption from smart 

water meters for the last two 

months 

Java, Map Reduce, 

Input HBASE, Output 

PostgreSQL 

Smart Water Meter Data Pre-

Aggregation 

Aggregation Computes aggregates for 

daily, weekly and monthly 

intervals for every user over 

a variable time interval 

Java, Map Reduce, 

Input/Output HBASE 

Data Service in Process 

Implementation 

Aggregation Implements Data Service 

execution in process 

Java, In process, 

Input HBASE 

Data Service Map Reduce 

Implementation 

Aggregation Implements Data Service 

execution using Map Reduce 

Java, Map Reduce, 

Input HBASE, Output 

HDFS 

Households Clusters Clustering Finds groups of similar 

households based on their 

water consumption for the 

preferable time intervals 

JAVA, Flink ML,  

Input/Output wrappers 

for HDFS 

Consumers Clusters Clustering Finds groups of similar 

consumers based on their 

water consumption for the 

preferable time intervals 

JAVA, Flink ML,  

Input/Output wrappers 

for HDFS 

https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/service/message/DefaultMessageService.java
https://github.com/DAIAD/home-web/blob/master/src/main/java/eu/daiad/web/jobs/ConsumptionClusterJobBuilder.java
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Households Synopsis Aggregation Computes total, maximum, 

minimum and average 

householdsɅ water 

consumption for the 

preferable time intervals    

JAVA, Flink ML,  

Input/Output wrappers 

for HDFS 

Consumers Synopsis Aggregation Computes total, maximum, 

minimum and mean 

consumersɅ water 

consumption for the 

preferable time intervals    

JAVA, Flink ML,  

Input/Output wrappers 

for HDFS 

Households Characteristics Classification Predicts householdsɅ 

characteristics (income, size, 

etc.) when contextual data 

(i.e. demographics, 

behavioral, etc.) are 

available based on water use 

JAVA, Flink,  

Input/Output wrappers 

for HDFS 

Consumers Characteristics Classification Predicts consumersɅ 

characteristics (sex, age, 

income, etc.) when 

contextual data (i.e. 

demographics, behavioral, 

etc.) are available based on 

water use 

JAVA, Flink,  

Input/Output wrappers 

for HDFS 

Households Classes Classification Computes and predicts 

householdsɅ water 

consumption categories for 

the preferable time intervals 

JAVA, Flink,  

Input/Output wrappers 

for HDFS 

Households Water 

Consumption 

Classification - Regression Computes and predicts 

householdsɅ water 

consumption (in liters) for 

the preferable time intervals 

JAVA, Flink,  

Input/Output wrappers 

for HDFS 

Consumers Water 

Consumption 

Classification - Regression Computes and predicts 

consumersɅ water 

consumption (in liters) for 

the preferable time intervals 

JAVA, Flink,  

Input/Output wrappers 

for HDFS 
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2. FML-kNN Algorithmic Framework 

In this section, we present our work on developing the novel FML-kNN algorithmic framework, which has been 

integrated in the Consumption Analytics and Forecasting Engine to provide predictive analytics at the city level. 

FML-kNN supports two major machine learning processes, classification and regression, over high volumes of 

water consumption data. Classification enables us to categorize consumersɅ consumption on a city scale, assign 

consumers to different consumption classes according to their behavioral characteristics, and provide water 

utilities with useful insights. Regression enables us to produce scalable predictive analytics from massive 

amounts of water consumption data and perform forecasting tasks for the next week/month/year for the 

entire population. 

In the following, we present an overview of the frameworkɅs components, the state-of-the-art on scalable 

predictive analytics, and our contributions. Next, we present some preliminaries which enable the reader to 

follow the models which were incorporated into our algorithms. A detailed presentation follows of the actual 

algorithms and their respective execution stages. The experimental evaluation of our work against competing 

algorithms and systems is presented in the next section. 

2.1. Overview 

FML-kNN is a novel algorithmic framework which implements the k-Nearest Neighbors joins algorithm (kNN 

joins) [BK04]. kNN joins retrieves the nearest neighbors of every element in a testing dataset (R) from a set 

of elements in a training dataset (S) of arbitrary dimensionality. In the context of DAIAD, kNN joins enables 

us to efficiently handle massive amounts of water consumption and contextual data. To manage their high 

dimensionality, FML-kNN applies a dimensionality reduction method. This introduces loss of accuracy, which 

is partly compensated by a data-shifting approach. To parallelize its execution, FML-kNN partitions the data 

by calculating partitioning ranges for both testing and training datasets. As this requires costly sorting 

operations, it is performed on reduced datasets, which occur through a sampling approach. 

The contribution of our work is the provision of two popular machine learning methods (classification and 

regression) that share the same distributed, Flink-based kNN joins algorithm. They are both integrated in a 

machine learning algorithmic framework, named FML-kNN. Contrary to similar approaches, FML-kNN is 

executed in a single distributed session, despite the fact that the algorithm has three sequential stages which 

produce intermediate results. This unified implementation achieves better time performance and operational 

efficiency as it eliminates costly operations, i.e., fetching and storing the intermediate results among the 

execution stages.  

2.1.1. FML-kNN components 

FML-kNN provides classification and regression, two of the most important ML techniques. In the particular 

context of DAIAD, classification enables us to categorize consumersɅ consumption and regression enables us 

to forecast water consumption and predict consumersɅ characteristics.  
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Specifically, the components of FML-kNN are the following: 

¶ F-kNN probabilistic classifier. It predicts the class/category of each element in a testing dataset (R), 

using historical data in a training dataset (S). 

¶ F-kNN regressor. It predicts the value of each element in a testing dataset (R), using historical data 

in a training dataset (S). 

FML-kNN is influenced by the H-zkNNJ [ZL+12] algorithm and is implemented on the Apache Flink Big Data 

processing engine, which has various advantages compared to Hadoop (see section 1.2 for details). As a 

result, FML-kNN inherits the advantages and characteristics of Apache Flink: 

¶ It allows to model operations and jobs as Directed Acyclic Graphs (DAGs), which is more flexible than 

the standard MapReduce model where Map operations are strictly followed by Reduce operations. 

¶ It allows for data pipelining and in-memory data transfer optimizations (i.e. less data preprocessing 

and transfer). This achieves better efficiency as it reduces disk access and network traffic. 

¶ It efficiently supports iterative algorithms, which are extremely expensive in the standard MapReduce 

framework. 

In summary, FML-kNN has three processing stages which have been unified in single Flink session and detailed 

in 2.3.3. These are: 

¶ Data pre-processing (stage 1). During this stage the dimensions of the data are reduced in order to 

minimize computational complexity. 

¶ Data partitioning and organization (stage 2). During this stage the dataset is separated into several 

sets, i.e. partitions, with each partition processed independently. 

¶ kNN computation (stage 3). This stage generates the final kNNs for each data element. 

 

2.1.2. Related work 

Several MapReduce-based algorithms for kNN joins have been proposed in the Big Data literature. However, 

none of these approaches handles the specific nature of water consumption data (i.e. missing values, outliers, 

etc.). Song et al. [SR+15] present a review of the most efficient MapReduce-based algorithms for kNN joins 

and conclude that H-zkNNJ [ZL+12] algorithm outperforms in terms of completion time other similar methods. 

The most representative among them is RankReduce [SM+10] which uses Locality Sensitive Hashing (LSH) 

[IM98]. H-zkNNJ was developed over the Hadoop platform and operates in three (3) separate MapReduce 

sessions. Our contribution in FML-kNN is the unification of these sessions into one distributed Flink session. 

This achieves better time performance as it reduces multiple access and storage of data. 

In the water/energy domain there are multiple applications of a kNN-based classification or regression to 

produce predictive analytics. Chen et al. [CD+11] use a kNN classification method to label water data and 

identify water usage, focusing however, on very small collections of data. Naphade et al. [NL+11] and Silipo 

and Winters [SW13] focused on identifying water and energy consumption patterns, providing analytics and 

predicting future consumptions. Similarly, they experimented on data of low granularity. Schwarz et al. 

[SL+12] used kNN for classification and short-term prediction in energy consumption by using smart meter 
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data. However, they focused on an in-memory approach (not parallel or distributed), thus limiting the 

applicability of their work on larger datasets. FML-kNN partially relates to the work of Kermany et al. [KM+13], 

where the kNN algorithm was applied for classification on water consumption data, in order to detect irregular 

consumer behavior. Although their approach handles huge volumes of data, they were only limited on 

identifying irregularities and no other useful characteristics.   

 

2.2. Preliminaries 

In the following, we present basic concepts regarding classification and regression based on kNN joins, as 

well as methods for dimensionality reduction. 

2.2.1. Classification 

To classify a query dataset R (testing) containing new elements, a labelled dataset S (training) is required. A 

classifier implemented by using kNN joins algorithm categorizes new elements by using a similarity measure 

expressed by a distance function (i.e. Euclidean, Manhattan, Minkowski, etc.). In FML-kNN we used the 

Euclidean distance. The distance has as a result to obtain for each lookup element in the testing dataset R the 

dominant class (i.e. class membership) which consists of the elementɅs kNN. kNN classification in most cases 

also integrates a voting scheme, according to which, the class that appears more times among the nearest 

neighbors will be the resulting class. The voting scheme can be weighted when someone takes into account 

the distances between the nearest neighbors. Then each nearest neighbor has a weight according to its 

distance to the lookup element. 

The set of the kNN is expressed as ὢ  ὼ ȟὼ ȟȢȢȢȢȟὼ  and the class of each one as a set ὅ 

 ὧ ȟὧ ȟȢȢȢȟὧ , the weight of each neighbor is calculated as follows [GX+11]: 

ύ

Ὠ Ὠ

Ὠ Ὠ
ḊὨ Ὠ

ρ                   ḊὨ Ὠ

    ȟ Ὥ ρȟȢȢȢȟὯ      ρ 

where Ὠ  is the closest neighbor and Ὠ  is the furthest one to the lookup element. By this calculation, 

the closest neighbors will be assigned a greater weight.  

2.2.2. Regression 

Regression is a statistical process, used to estimate the relationship between one dependent variable and 

one or more independent variables. In the machine learning domain, regression is a supervised method, 

which outputs continuous values (instead of discrete values such as classes, categories, labels, etc.). These 

values represent an estimation of the target (dependent) variable for the new observations. A common use 

of the regression analysis is the prediction of a variable's values (e.g., future water/energy consumption, 

product prices, web pages visibility/prediction of potential visitors), based on existing/historical data. There 

are numerous statistical processes that perform regression analysis, however, in the case of kNN, regression 

can be performed by averaging the numerical target variables of the kNN as follows. 
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Considering the same set of kNNs ὢ  ὼ ȟὼ ȟȢȢȢȢȟὼ   and the target variable of each one as ὠ 

 ὺ ȟὺ ȟȢȢȢȢȟὺ , the value of a new observation will be calculated as: 

ὺ
ὺ

Ὧ
ȟ Ὥ ρȟȢȢȢȟὯ      ς 

2.2.3. Dimensionality reduction 

The curse of dimensionality is an inherent challenge for data analysis tasks, which causes the increase of data 

sparsity as their dimensionality increases. In the case of kNN, it also exponentially increases the complexity of 

distance calculations. . Further, for the particular case of DAIAD, data dimensionality increases as we combine 

water consumption and contextual data from the entire population. Consequently, with the volume of the 

data constantly increasing, a dimensionality reduction method is necessary to avoid costly distance 

computations. 

Dimensionality reduction is a method which reduces the dimensions to one. In the literature, Space Filling 

Curves, namely z-order, Gray-code and Hilbert curve (Figure 7) are used. Each curve scans the n-dimensional 

space in a dissimilar manner and exhibits different characteristics w.r.t. the optimal space scanning and the 

computational complexity. 

 

Figure 7: Space Filling Curves. (a) z-order curve, (b) Grey-code curve, (c) Hilbert curve 

¶ Z-order curve (Figure 7(a)) is computed by interleaving the binary codes of an element's features. 

This process takes place starting from the most significant bit (MSB) towards the least significant 

(LSB). For example, the z-value of a 3-dimensional element with feature values 3 (πρρ), 4 (ρππ) 

and 5 (ρρπ), can be formed by first interleaving the MSB of each number (0, 1 and 1) going towards 

the LSB, thus, forming a final value of πρρρπρρππ. This is a fast process, not requiring any costly 

CPU execution. 

¶ Gray-code curve (Figure 7(b)) is very similar to z-order curve as it requires only an extra step. After 

obtaining the z-value, it is transformed to Gray-code by performing exclusive-or operations to 

successive bits. For example, the Gray-code-value of  πρππ will be calculated as follows. Initially, 

the MSB is left the same. Then, the second bit will be an exclusive-or of the first and second (πṥ

ρ ρ), the third an exclusive-or of the second and third (ρṥπ ρ) and the fourth an 

exclusive-or of the third and fourth (πṥπ π). Thus, the final Grey-code-value will be πρρπ. 
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¶ Finally, the computation of Hilbert curve (Figure 7(c)) requires more complex computations. The 

intuition behind Hilbert curve is that two consecutive points are nearest neighbors, thus, avoiding 

Ɉjumpingɉ to further elements, as in z-order and Gray-code curves. The curve is generated recursively 

by rotating the two bottom quadrants at each recursive step. There are several algorithms that map 

coordinates to Hilbert coding. We deployed the methods described in [La00] offering both forward 

and inverse Hilbert mapping. 

2.3. FML-kNN  

This section outlines the design and implementation of FML-kNN. The main contribution of FML-kNN is the 

unification of the three different processing stages into a single Flink session. Multi-session implementations, 

regardless of the distributed platform on which they are developed and operated, are significantly inefficient 

due to the following reasons: 

¶ The multiple initializations of the distributed environment. They increase the total wall-clock time 

needed by an application in order to produce the final results. 

¶ The extra I/O operations during each stage. They introduce latency due to I/O operations and occupy 

extra HDFS space. 

We avoid the above issues by unifying the distributed sessions into a single one. Figure 8 illustrates the 

unified session. The stages are executed sequentially and I/O operations with HDFS take place only during 

the start and end of the execution. 

 

Figure 8: Single Flink session 

 

2.3.1. Dimensionality reduction and shifting 

To perform dimensionality reduction, we transform the elements of the input dataset into SFC values via either 

z-order, or Gray-code, or Hilbert curve. In our case, we enrich the consumption data with contextual features 

(temporal/seasonal/meteorological, etc.). We have 16 dimensions in our dataset which makes kNN 

computation very difficult especially when the elements count millions of records (see Section 3.2.1). Figure 

7(a) shows the way z-order curve fills a two-dimensional space from the smallest z-value to the largest. We 
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notice that some elements are falsely calculated being closer than others, as the curve scans them first. This 

in turn creates an impact on the resultɅs accuracy. We overcome the latter by shifting all the elements by 

randomly generated vectors and repeating the process using the shifted values. This method compensates the 

lost accuracy as it enables scanning the space in an altered sequence. This is demonstrated in Figure 9. 

 

Figure 9: Data shifting. The grey dots represent the shifted values 

The four bottom-left elements are shifted twice in the x-axis and once in the y-axis, altering the sequence in 

which they are scanned by the z-order curve. Consequently, taking under consideration nearest neighbors of 

a point from shifted datasets, one can obtain elements that are close to it, but are missed by the un-shifted 

SFC. The limitation of this approach is the fact that it has to be executed multiple times, one for each chosen 

shift i ҽ [1, ɖ], where ɖ is the total number of shifts. 

2.3.2. Partitioning 

A crucial part of developing a MapReduce application is the way input data are partitioned in order to be 

delivered to the required reducers. Similar baseline distributed approaches of kNN joins problem perform 

partitioning on both R and S datasets in n blocks each and cross-check for nearest neighbors among all possible 

pairs, thus requiring n^2 reducers. This step is necessary in order to properly partition the data and feed 

them to the n reducers. We avoid this issue by computing n overlapping partitioning ranges for both R and S, 

using each elementɅs SFC values. This way, we make sure that the nearest neighbors of each R partitionɅs 

elements will be detected in the corresponding S partition. We calculate these ranges after properly sampling 

both R and S, due to the fact that this process requires costly sorting of the datasets. 

2.3.3. FML-kNN workflow 

FML-kNN has the same workflow as other similar approaches [SR+15] (see 2.1.2), and consists of three 

processing stages. The workflow of the algorithm is depicted in Figure 10. The operations that each stage of 

FML-kNN performs are enumerated below (the Flink operation/transformation is in parentheses): 

¶ Data pre-processing (stage 1):  

ɍ Performs dimensionality reduction via SFCs on both R and S datasets (Flat Map R/S). 

ɍ Shifts the datasets (Flat Map R/S). 

ɍ Unifies the datasets and forwards to the next stage (Union). 

ɍ Samples the unified dataset (Flat Map Sampling). 
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ɍ Calculates the partitioning ranges and broadcasts them to the next stage (Group Reduce). 

¶ Data partitioning and organization (stage 2): 

ɍ Partitions the unified dataset into n partitions, using the received partitioning ranges 

(Flat Map). 

ɍ For each partition and each shifted dataset, the kNNs of each element in dataset R are 

calculated (Group Reduce). 

¶ kNN computation (stage 3): 

ɍ The final kNNs for each element in dataset R are calculated and classification or 

regression is performed (Group Reduce).  

 

Figure 10: Single session FML-kNN 

In the following, we present each stage in more details. 

2.3.3.1. Data pre-processing (stage 1) 

The R and S datasets are read as plain text from HDFS and delivered to two separate concurrent flatMap  

transformations, identifiable by the input source file. During this stage, the SFC values (z-values for z-order, 

h-values for Hilbert and g-values for Grey-code curve) and possible shifts, are calculated and passed to a 

union  transformation, which creates a union of the two datasets. The unified and transformed datasets are 

then forwarded to the next stage (stage 2) and to a sampling process, which is performed by a separate 

flatMap  transformation. The sampled dataset is then passed on a groupReduce  transformation, 

grouped by a shift number. This way,  (number of shifts) reducers will be assigned with the task of 

calculating the partitioning ranges for R and S datasets, which are then broadcast to the next stage (data 

partitioning and organization). The left part of Figure 10 depicts this process. 

Algorithm 1 presents the pseudocode of stage 1. The random vectors are initially generated and cached on 

HDFS in order to be accessible by all the nodes taking part in the execution. They are then given as input to 

the algorithm, along with datasets R and S. Notice that v π


, which indicates that the datasets are not 

shifted during this iteration. This process takes place  times, where  is the number of shifts (Line 5). After 

shifting the datasets, during the first mapping phase (Lines 5-9), the elements' SFC values are calculated and 

collected to Ὑ  and Ὓ (Ὥ ρȟȢȢȢȟ). Then, the sampling is performed by the second mapping phase (Lines 
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10-17). During the reduce phase (Lines 18-22), the partition ranges (2ÒÁÎÇÅ and 3ÒÁÎÇÅ) for each shift 

are calculated using the sampled datasets and broadcast to stage 2 (Lines 18-20). The output is the unified 

transformed datasets, which finally feed the data partitioning and organization stage (Line 22). 

 

Algorithm 1: Data pre-processing (stage 1) 

2.3.3.2. Data partitioning and organization (stage 2) 

The transformed datasets of the stage 1 are partitioned to ὲ Ø  blocks via a custom partitioner, after fetching 

the previously broadcast partitioning ranges. Each block is then delivered to a different reducer through a 

groupBy  operation. Finally, the nearest neighbors for each lookup element are calculated via proper range 

search operations and passed on the next stage (kNN computation). The middle part of Figure 10 depicts this 

process. 

Algorithm 2 presents the pseudocode of stage 2. During the map phase (Lines 7-18), after having read each 

shift's broadcast partition ranges (Line 6), the received transformed datasets are partitioned into  Ø ὲ 

buckets (Ὑ   and Ὓ  , Ὥ ρȟȢȢȢȟȟὫ ρȟȢȢȢȟὲ) Lines 13 & 18),  being the number of shifts and n 

the number of partitions. The partitions 3   are then sorted and emitted to the reducers (Lines 23-30) along 

with the corresponding partitions 2  . There, for each x ɴ R element, a range search is performed on the 

proper sorted partition in order for its kNN to be determined (Line 23) and its initial coordinates are 

calculated (Line 24). The initial coordinates of all neighboring elements' coordinates are then calculated (Line 

26) and their distance to the x ɴ R element is computed (Line 27). Finally, all nearest neighbors are integrated 

into the proper dataset (Ὑ  , Line 28) along with the calculated distance and feed the stage 3, grouped by 

x ɴ R elements. 
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Algorithm 2: Data partitioning and organization (stage 2) 

2.3.3.3. kNN computation (stage 3) 

The calculated  Ø ὯNN of each R element, are received from stage 2 and forwarded to |R| reduce tasks, 

which calculate the final kNNs and perform either classification or regression, depending on user preference.  

We extend this approach by assigning a probability to each of the candidate classes for the lookup element. 

We consider the set ὖ  ὴ where l  is the number of classes. The final probability for each class is 

derived as follows: 

ὴ

ύẗὍὧ ὧ

В ύ
ȟ Ὦ ρȟȢȢȢȟὰ        σ 

where Ὅὧ  ὧ  is a function which takes the value 1 if the class of the neighbor ὼ  is equal to ὧ.  

Finally, we classify the element as: 

ὧ  ὥὶὫάὥὼ ὖȟ Ὦ ρȟȢȢȢȢȟὰ      τ 
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which is the class with the highest probability. This method is used for each element in the testing dataset 

(R). 

In this stage, we calculate either the probability for each class (classifier) or the final value (regressor) for 

each element in R. The result is stored on HDFS in plain text. More details on the several data formats in the 

course of the algorithmɅs execution can be found in Annex: Evaluation datasets. The right part of Figure 10 

depicts this process. 

Algorithm 3 presents the pseudocode of stage 3. During the stage 3 of the algorithm, which consists of only a 

reduce operation, kNNs of each R element are fetched from the grouped set of Ὑ  . Finally, for each lookup 

element either classification (Line 9) or regression (Line 11) is performed, after determining its final nearest 

neighbors (Line 7). The results are added to the resulting dataset (Line 9), which is then stored on HDFS (Line 

12) in the proper format. 

 

Algorithm 3: kNN computation (stage 3) 
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3. Experimental Evaluation 

In this section we present a comparative benchmarking evaluation of FML-kNN based on synthetic data. 

Further, we apply and evaluate FML-kNN against real-world data in two major cases for the project: (a) 

forecasting a householdsɅ water consumption simultaneously for all households within a city, (b) producing 

predictive analytics from shower events performed by multiple households. The experiments were performed 

on a pseudo-distributed environment, setup on a machine located at the University of Peloponnese at Tripolis. 

More details on the benchmarking environment and the datasets can be found in Annex: Benchmarking 

Environment and Annex: Evaluation datasets. 

3.1. Experimental setup 

3.1.1. Metrics 

We use four different well known performance measures in order to evaluate the quality of the results 

obtained by the classifier and the regressor. These performance measures are included in the framework in 

order to allow expert users to assess the various data analysis tasks. Accuracy and F-Measure are implemented 

for classification, while Root Mean Square Error (RMSE) and Coefficient of determination (2 ) are used to 

evaluate the quality of regression. A short description of what each of these metrics represents in our 

experimentation is listed below: 

¶ Accuracy. The percentage of correct classifications (values from 0 to 100). It indicates the classifier's 

ability to correctly identify the proper class for each element. 

¶ F-Measure. The weighted average of precision3 and recall4 of classifications (values from 0 to 1). Using 

this metric, we ensure good balance between precision and recall, thus, avoiding misinterpretation 

of the accuracy. 

¶ Root Mean Squared Error (RMSE). Standard deviation between the real and predicted values via 

regression. This metric has the same unit as the target variable. It provides us with the insight of how 

close the guessed values are to the real ones. 

¶ Coefficient of determination (╡ ). Indicates the quality of the way the model fits the input data. It 

takes values from 0 to 1, with 1 being the perfect fit. A good fit means that the regressor is able to 

properly identify the variations of the training data. 

3.1.2. Parameters 

FML-kNN uses a variety of input parameters required by the distributed kNN algorithm, in order to support 

the classification and regression processes. Regarding the value of the k parameter that was used throughout 

the experiments (Sections 3.2, 3.3 and 3.4) and due to the fact that the optimal value is problem specific, we 
                                                        
3 The fraction of (binary) classifications as ɄtrueɅ that are correct over the whole dataset. 
4 The fraction of (binary) classifications as ɄtrueɅ that are correct over the number of elements labelled as ɄtrueɅ. 
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performed a separate cross-validation5 evaluation for each use case. The best k parameter is determined in 

order to support the best balance between completion time and accuracy. 

FML-kNNɅs core algorithm receives as input a vector of size equal to the dimension of the input dataset, 

indicating the weight of each feature according to its significance to the problem. Each feature is multiplied 

with its corresponding weight before the execution of the algorithm in order to perform the required scaling, 

according to the feature's importance. To automatically determine an optimal feature weighting vector, we 

execute a genetic algorithm6, which uses a specific metric as cost function (see Section 3.1.1). The parameters 

of the genetic algorithm, such as the size of the population, the probability to perform mutation or crossover, 

the elite percentage of the population and the number of the iterations are currently hard-coded, but in a 

future extension they will be provided as arguments. 

The number of partitions throughout the experimental evaluation is set to 8 and the number of shifts is set to 

2. Thus, the level of parallelism of all distributed tasks was set to 16, in order to process the partitions 

simultaneously. 

3.2. Benchmarking 

We present a comparative benchmarking with similar Apache Spark7and Hadoop-based implementations of 

the probabilistic classifier (the results are similar for the regressor). Hadoop does not enable the unification 

of the sessions because the output cannot be pipelined between the stages and reducers wait the mappers 

to finish their execution before they start. For this reason and in order to conduct the benchmarking, we also 

implemented the probabilistic classifier in three sessions for Flink and Spark. As a single session version is 

not supported in Hadoop, we only implemented the single session version in Spark. FML-kNN as presented 

has been implemented in a single session version. 

They are all executed on a single node HDFS, over a local YARN resource manager (see Annex: Benchmarking 

Environment). This way, each Flink task manager, Spark executor or Hadoop daemon runs on a different YARN 

container. The comparison was carried out using the synthetic dataset (see Synthetic Datasets). More 

particularly, wall-clock time and scalability comparison was carried-out among:   

¶ FML-kNN (single session). The main algorithm, presented in the previous section. 

¶ FML-kNN (three sessions). A three-session version of FML-kNN, where each stage is executed by a 

different Flink process.  

¶ Spark kNN (single session, referred to as S-kNN). An Apache Spark version with the same architecture 

as FML-kNN. 

                                                        
5 Cross-validation is implemented by iteratively splitting the entire dataset into ten equal parts and then executing the algorithm the same number of times, 

using a different subset as training set while the rest of the sets, unified, comprise the testing set. Cross-validation outputs the average of a specific metric, 

across all executions. We used accuracy for classification and RMSE for regression. 
6 A genetic algorithm, optimizes the solution for an optimization problem by iteratively randomly mutating (i.e., applying small changes) a population of 

solutions, or performing a crossover among them (i.e., combining two or more solutions to a new one). During each iteration, a number of solutions is 

chosen as the elite population and remains unchanged. At the end of execution, the solution with the best score (i.e., according to a specific metric) is 

chosen as the final solution. 
7 http://spark.apache.org 
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¶ S-kNN (three sessions). A three-session version of S-kNN, where each stage is executed by a different 

Spark process. 

¶ H-zkNNJ. An extended version of the algorithm executed in three separate sessions. We extended over 

this algorithm with the ability to perform probabilistic classification. 

A one-session version of the H-zkNNJ algorithm is not possible, due to the fact that Hadoop can only execute 

one map, followed by one reduce operation. A single session requires the three stages to be executed in a 

sequential manner, which is not possible in Hadoop, as it would require mapping to be performed after 

reducing operations several times. 

Despite significant differences in the distributed processing platformsɅ configuration settings, the different 

implementations were configured in order to use the same amount of system resources. A maximum of 16 

simultaneous tasks (see Section 3.1.2) are executed in all cases: 

¶ For Flink and Spark, a total of 4 task managers (one per CPU) and executors respectively were assigned 

32768 MB of Java Virtual Machine (JVM) heap memory. Each task manager and executor was given a 

total of 4 processing slots (Flink) or executor cores (Spark). 

¶ For Hadoop, the parallelism ability was set to 16 by assigning the mappers and the reducers to the 

same number of YARN containers, with 8192 MB of JVM each. Thus, the total amount of JVM heap 

memory assigned to each session is always 131072 MB (either 4 x 32768 MB, or 16 x 8192 MB). 

3.2.1. Wall-clock completion  

Table 1 shows the probabilistic classifier's wall-clock completion time of all Flink, Spark and Hadoop versions, 

run in either three or one sessions, where possible. From the 100M elements of the synthetic dataset, 90% 

(90M) were used as the training set (S), while the rest 10% (10M) were used as the testing set (R), i.e., the 

elements we want to classify. It is apparent that: 

¶ Flink-based implementations perform significantly better than the rest, in both three and one-session 

versions. This is due to Flink's ability to process tasks in a pipelined manner, which allows the 

concurrent execution of successive tasks, thus, gaining in performance by compensating time spent 

in other operations (i.e., communication between the cluster's nodes). 

¶ For Flink, the total time of the three-session version is similar to the unified one, again due to the 

pipelined way of execution, which compensates the time lost during HDFS I/O operations during each 

session. 

¶ The one-session Spark is significantly faster than the total wall-clock time of the corresponding three-

session setting. This is due to the reduction of the I/O operations on HDFS during the beginning and 

the end of each session. 

¶ The wall-clock completion time of Spark is slightly lower for each stage than Hadoop, confirming 

SparkɅs documented better performance over Hadoop. 
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Table 1: Wall-clock completion time 

 

3.2.2. Scalability 

Figure 11 shows the way each version scales in terms of completion time for ten different dataset sizes. The 

datasets were generated by splitting the synthetic dataset, obtaining datasets containing from 10M (1M 

testing, 9M training), to 100M (10M testing, 90M training) elements. As illustrated in the figure, the Flink-

based implementations exhibit similar performance and scale better as the dataset's size increases. However, 

the unified version, i.e., the one used in FML-kNN, has the advantage of not requiring user input and session 

initialization between the algorithm's stages. Flink's pipelined execution advantages are apparent if we 

compare the scalability performance of all the three-session implementations: The I/O HDFS operations cause 

the Spark and Hadoop versions to scale significantly worse than Flink, which performs similarly to the unified 

version. 

 

 

Figure 11: Scalability comparison 

3.3. Water consumption forecasting 

In this section we use the Smart Water Meter (SWM) dataset (see Annex: Evaluation datasets) to apply FML-

kNN in forecasting future water consumption, based on historical consumption data in the form of time-series. 

We ran FML-kNN over all consumersɅ data in order to assess the scalability and the prediction precision of 

Version 3 Sessions 1 Session 

1st 2nd 3rd Total Time Total Time 

F-kNN                                          03m 45sec 24m 59sec 01m 48sec 30m 32sec 30m 25sec 

S-kNN                                          07m 12sec 29m 15sec 03m 01sec 39m 28sec 33m 03sec 

H-zkNNJ                                        06m 00sec 31m 19sec 05m 54sec 43m 13sec N/A 
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our algorithmic framework. We also conducted an experimental evaluation regarding the three SFCs in order 

to determine which of them better fits our needs regarding prediction accuracy. However, there is a trade-off 

between the prediction accuracy and the time performance, we leave the user to select the preferable SFC 

while executing FML-kNN through the command line.  

3.3.1. Feature extraction 

Time-series data on water consumption pose several challenges on applying machine learning algorithms for 

forecasting purposes. Apart from the actual measurement values, one must take into account their correlation 

with previous values, their seasonality, the effect of context factors, etc. [HC11]. To achieve this, we extracted 

a total of nine temporal and consumption-related features for each data element. We also integrated five 

weather conditions-related features into the dataset. They were obtained via the Weather Underground API8 

by taking into account the date of the timestamp for the area of interest.  

In the following, we present all the features: 

¶ Hour. The hour during which the consumption occurred. In order to adjust to kNN algorithm's nature 

and due to the fact that the target value is water consumption, we calculated the average consumption 

of each hour, sorted it according to the result and labelled it. 

¶ Time Zone. We grouped the hours into four time zones of consumption: 1am - 4am (sleep), 5am - 

10am (morning activity), 11am - 7pm (working hours) and 8pm - 12am (evening activity). Similarly, 

we sorted and labelled it according to the average time zone consumption. 

¶ Day of week. The day of the week from 1 (Monday) to 7 (Sunday). We sorted and labelled it according 

to the average daily consumption. 

¶ Month. The month, from 1 (January) to 12 (December). We sorted and labelled it according to the 

average monthly consumption. 

¶ Weekend. This is a binary feature which indicates if the consumption occurred during a weekend. We 

decided to include this feature after noticing differences between average hourly consumption during 

weekdays and weekends. 

¶ Customer group. We run a k-Means9 clustering algorithm, configured to run for time-series data using 

Dynamic Time Warping (DTW) as a centroid distance metric, on the weekly average per-hour 

consumption for each customer. We determined that ten was the optimal number of clusters, 

considering the number of customers (1000) and by taking into consideration the clustering quality. 

We measured the latter using the Davies-Bouldin index metric (see Section 3.1.1). Similarly, we sorted 

and labelled it according to per cluster average consumption. 

¶ Customer ranking. For each hour, we calculated the average hourly consumption of each customer 

and sorted according to it. Then, we labelled each element according to its ranking in the sorted list. 

¶ Customer class. This feature represents customer groups of one and up to four classes according to 

their monthly average consumption, i.e. Ɉenvironmentally friendlyɉ, Ɉnormalɉ, Ɉspendthriftɉ, Ɉsignificantly 

spendthriftɉ. 

                                                        
8 https://www.wunderground.com/weather/api/ 
9 k-Means clustering partitions n elements into k clusters, in which each element belongs to the cluster with the nearest centroid, which is calculated by 

averaging the elements of each cluster. 
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¶ Season. The season, from 1 (winter) to 4 (autumn). Similarly, we sorted and labelled it according to 

consumption per season. 

¶ Temperature. The temperature during the hour (Celsius scale). 

¶ Humidity. The relative humidity during the hour (percentage).  

¶ Weather conditions. The weather conditions during the hour, integer labelled (i.e. cloudy = 1, sunny 

= 2, overcast = 3, etc.). 

¶ Continuous rainfall. Amount of hours of continuous rainfall. 

¶ Continuous heat. Amount of hours of continuous heat (above 25C). 

Each element also contained two target variables, being the exact meter reading at each timestamp and a 

binary flag, indicating whether consumption occurred during that hour or not (i.e., if the meter reading was 

positive or zero). In the future, we will include further features that affect water demand, such as important 

and local events (e.g., national holidays, festivals, football games, etc.). 

3.3.2. Procedure 

The consumption forecasting is performed for all the households (1000) in the dataset for the last two 

available weeks. The procedure is consisted of the following two processes: 

¶ Classification. We first execute F-kNN probabilistic classifier, with the testing set (R) comprising of 

the last two weeks of water consumption for each household, in order to obtain the possibility of 

whether consumption will occur or not, during each hour. The rest of the dataset is used as the 

training set (S). We perform binary classification, obtaining an intermediate dataset indicating 

whether or not consumption will occur for each testing element. 

¶ Regression. Using the hours during which we predicted that water will be consumed, we run F-kNN 

regressor, obtaining a full predicted time-series result of water consumption for each user. 

Before we execute each algorithm, we determine the optimal scale vector using the genetic approach (see 

Section 3.1.2). Also, in order to choose the optimal k parameter for both algorithms, we employed a ten-fold 

cross-validation approach. The k value that achieved the best balance between completion time and result 

quality was 15, for both F-kNN probabilistic classifier and regressor. 

3.3.2.1. SFC accuracy evaluation 

FML-kNN supports three SFC-based solutions for reducing the dimensionality of the input data to just one 

dimension, namely the z-order, Hilbert and Grey code curves. We evaluated the completion time and 

approximation quality of each SFC, in order to select the best choice which balances time performance and 

approximation accuracy. Table 2 presents the metric and time performance related results of F-kNN 

probabilistic classifier and regressor for each SFC, which we obtained from running the algorithms using the 

ten-fold cross-validation. 
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Table 2: Space Filling Curves' performance 

All three SFCs experience similar performance. Hilbert curve scores higher in all metrics as expected, however 

only slightly. Consequently, we choose the z-order curve to perform water consumption forecasting tasks, as 

it exhibits better time performance due to its decreased calculation complexity. 

3.3.3. Results 

3.3.3.1. Water consumption forecasting 

Among all the households and for each hour during the last two available weeks, the classifier correctly 

predicted the 74.54% (F-Measure: 0.81) of the testing set's target variables, i.e., the hours during which some 

consumption occurred for the two-week period. For these specific hours the regressor achieved a RMSE score 

of 19.5 and a Coefficient of determination score of 0.69. The results were combined into a single file, forming 

the complete time-series of the dataset's last two weeks' (June 16-30 2014) water consumption prediction for 

all the users.  

Figure 12 shows four users' consumption prediction versus the actual one, during four different days. The 

prediction for user #4 was close to the actual consumption. The results seem to follow the real values, but 

are not able to properly follow the observed ones. This indicates that it is rather difficult to accurately predict 

a single user's future water consumption, due to possible random or unforeseen events during a day, a fact 

which justifies the rather large RMSE score. For example, consumptions higher that 20 liters during an hour 

(e.g., user #3 around 6:00) could indicate a shower event, while larger consumptions (>50 liters) over more 

than one hour could suggest usage of the washing machine or dish washer (e.g., user #3 from 16:00 to 20:00), 

along with other activities.  

In order to assess the generalization of the results, we calculated the average RMSE of the hour and volume 

of the peak consumption during each day, as well as the average RMSE of the total water use per day, for all 

the predictions. The rather high errors, (8.89 hours, 28.9 liters and 132.23 liters respectively), confirm that it 

is a hard task to accurately predict random daily events. However, despite the difficulty, our algorithms' 

predictions are able to mostly follow the overall behavior during most days (e.g., user #3 and user #1). 

Curve Classification Regression 

Accuracy F-Measure Wall-clock time RMSE ἠ  Wall-clock time 

z-order 70.24% 0.775      1m 20sec         18.86 0.64                 0m 59sec         

Hilbert 70.54% 0.78       1m 32sec         18.69 0.66                1m 15sec         

Grey-code 70.4% 0.777      1m 25ec          18.81 0.64             1m 5sec         




























